В 1891 г. она уезжает в Париж и поступает на физико-математический факультет Сорбонны. В 1893 г. она получает степень лиценциата физических наук, а через год становится лиценциатом математических наук.
В это же время она выполняет первую научную работу по теме «Магнитные свойства закаленной стали», предложенной известным изобретателем цветной фотографии Липпманом. Работая над темой, она перешла в Школу промышленной физики и химии, где встретилась с Пьером Кюри.
Вместе они открыли новые радиоактивные элементы, вместе были удостоены в 1903 г. Нобелевской премии, и после гибели Пьера Мария Кюри стала его преемницей в Парижском университете, где Пьер Кюри был в 1900 г. избран профессором. 13 мая 1906 г первая женщина—лауреат Нобелевской премии становится первой женщиной-профессором знаменитой Сорбонны Она же впервые в мире начала читать курс лекций по радиоактивности. Наконец, в 1911 г. она становится первым ученым дважды лауреатом Нобелевской премии. В этом году она получила Нобелевскую премию по химии.
Во время первой мировой войны Мария Кюри создала рентгеновские установки для военных госпиталей. Перед самой войной в Париже был открыт Институт радия, ставший местом работы самой Кюри, ее дочери Ирен и зятя Фредерика Жолио. В 1926 г. Мария Склодовская-Кюри избирается почетным членом Академии наук СССР.
Тяжелое заболевание крови, развившееся в результате длительного действия радиоактивного излучения, привело ее к смерти 4 июля 1934 г. В год ее смерти Ирен и Фредерик Жолио-Кюри открыли искусственную радиоактивность. Славный путь династии Кюри блистательно продолжался.
Открытие рентгеновских лучей (Рентген, 1895 г.), радиоактивности (Беккерель, 1896 г.), электрона (Том-сон, 1897 г.), радия (Пьер и Мария Кюри, 1898 г.) положили начало изучению атомной и ядерной физики. В 1899 г. Э. Резерфорд выступил с большой статьей о радиоактивности, показав, что излучение урана и тория имеет сложный состав, разделяясь на лучи, названные им аив (позже к ним присоединились у-лучи). Это указывало на сложный характер радиоактивного излучения. В 1900 г., изучая давно известное человечеству тепловое излучение, Макс Планк открыл его атомный характер.
Тепловое излучение знакомо людям с незапамятных времен. Греясь на солнце или у огня, человек наслаждался теплом, испускаемым солнечными лучами или лучами очага. Но вот на вопрос, почему натопленная печь греет, оказалось не так-то легко ответить. Существование «тепловых лучей» предположил в XVIII в. химик Шееле (1742—1786), но опыты с тепловыми лучами проводили еще флорентийские академики, доказавшие, что «холод» от глыбы льда охлаждает шарик термоскопа, помещенного в фокусе вогнутого зеркала. Опыты с отражением тепловых лучей вогнутыми зеркалами («зеркала Пикте») проводил в XVIII в. Пикте (1752-1825), а Прево (1751—1839) в 1791 г. установил закон подвижного теплового равновесия. В. Гершель открыл невидимые «тепловые лучи» за красной частью видимого спектра.
Теория теплового излучения началась с 1859 г., когда Кирхгоф открыл основной закон теплового излучения, носящий его имя, и установил понятие абсолютно черного тела, испуска-тельная способность которого имеет универсальное значение. Макс Планк в своей научной автобиографии писал о законе Кирхгофа: «Этот закон утверждает, что если в откачанном пустом пространстве, ограниченном полностью отражающими стенками, находятся совершенно произвольные излучающие и поглощающие тела, то с течением времени устанавливается такое состояние, при котором все тела имеют одну и ту же температуру, а излучение по всем своим свойствам, в том числе по спектральному распределению энергии, зависит только от температуры, но не от свойств тел». Это равновесное излучение и есть излучение абсолютно черного тела, закон распределения которого по длинам волн спектра представляет универсальную функцию длин волн и температуры. «Это так называемое нормальное распределение энергии, — писал Планк, — представляет собой нечто абсолютное».
Через 20 лет после установления Кирхгофом своего закона (он обосновал его с помощью принципов термодинамики в 1860 г.) Жозеф Стефан (1835-1893) из измерений, выполненных французскими физиками, сделал вывод, что суммарная энергия всех длин волн, излучаемых черным телом, пропорциональна четвертой степени абсолютной температуры тела. Коэффициент пропорциональности есть универсальная константа.
Стефан сформулировал свой закон в 1879 г. Через пять лет, в 1884 г., ученик Стефана Людвиг Больцман, применив к излучению принципы термодинамики и исходя из существования светового давления, равного, по Максвеллу, для изотропного излучения одной трети объемной плотности энергии, вывел теоретически закон Стефана. С этого времени он стал называться законом Стефана — Больцмана, а постоянная закона — постоянной Стефана — Больцмана.
Читать дальше