Открытие периодического закона и предсказание на его основе новых элементов было высоко оценено Энгельсом, которьй назвал открытие Менделеева научным подвигом и сравнил его с предсказанием Леверье планеты Нептун. Это была очень высокая оценка— закон Менделеева оказался по своей точности и силе сравнимым с законами небесной механики. Эта оценка оправдалась и в дальнейшей истории закона: со времени его открытия было найдено свыше сорока новых элементов с самыми различными свойствами, и все они оказались включенными в систему Менделеева, а при открытии трансурановых элементов она служила руководящей нитью.
Американские ученые во главе с Сиборгом, открыв в 1955 г. элемент № 101, назвали его менделевий «в знак признания пионерской роли великого русского химика Дмитрия Менделеева, который первым использовал периодическую систему для предсказания химических свойств еще не открытых элементов — принцип, который послужил ключом для открытия последних, или трансурановых элементов».
Великий автор периодического закона отличался необычайной разносторонностью и широтой научной и общественной деятельности. Он был профессором Петербургского университета, в котором совместно с А. М. Бутлеровым и Н. А. Меншуткиным провел всю подготовительную работу по созданию новой химической лаборатории, которая была построена в 1891—1894 гг., когда А.И.Менделеева уже не было в университете. Он был вынужден уйти из университета в начале 1890 г. в знак протеста против действий министерства народного просвещения в связи со студенческими волнениями.
В 1893 г А И Менделеев был назначен хранителем Палаты мер и весов, которая под его руководством превратилась в первоклассное научно-метрологическое учреждение — Главную палату мер и весов, ныне Всесоюзный научно-исследовательский институт метрологии и стандартизации (ВНИИМС).
Д. И.Менделеева глубоко интересовало развитие промышленности и экономики России. Этому он посвятил немало трудов, активно участвуя в различных правительственных комиссиях, в том числе и по выработке таможенного тарифа. Нефтяное дело, металлургия, заводское дело, земледелие, промышленное развитие России, ее народонаселение—все интересовало ученого, везде он оставил свой неизгладимый след.
Кипучая, разносторонняя деятельность Дмитрия Ивановича Менделеева оборвалась в 1907 г. 20 января 1907 г. он скончался в Петербурге от воспаления легких.
С открытием спектрального анализа и периодического закона химических элементов стало ясно, что атом представляет сложную структуру с внутренними движениями его составных частей, порождающих характерные спектры. Но прежде чем приступить к изучению этой структуры, физике предстояло сделать новый шаг в развитии электромагнитной теории. Этот шаг был сделан Максвеллом.
Возникновение и развитие теории электромагнитного поля
Гипотеза поперечных световых волн Френеля поставила перед физикой ряд трудных проблем, касающихся природы эфира, т. е. той гипотетической среды, в которой распространяются световые колебания. Перед этими проблемами отступили на задний план и вопросы, касающиеся природы материальных частиц, испускающих световые волны, и задача отыскания механизма излучения в атомах и молекулах.
Нужно было ответить на такие вопросы: в каком направлении совершаются колебания в линейно поляризованной волне? Почему нет продольных световых волн и какими свойствами должен обладать эфир, чтобы допускать только поперечные волны? И наконец, как ведет себя эфир по отношению к телам, движущимся через него?
В послефренелевской оптике поискам ответов на эти вопросы было уделено значительное внимание. При ответе на первый вопрос было сделано две гипотезы: гипотеза Френеля и гипотеза Франца Неймана (1798—1895). Согласно гипотезе Френеля, световые колебания в линейно поляризованной волне происходят в направлении, перпендикулярном направлению плоскости поляризации. При этом эфир в весомых телах и свободный эфир отличаются своей плотностью, упругость же его остается неизменной. По гипотезе Неймана, колебания эфира совершаются в плоскости поляризации, эфир в весомых телах и свободный эфир различаются упругостью, а не плотностью.
Для объяснения поперечности световых волн предлагались различные гипотезы: гипотеза абсолютно несжимаемого эфира, эфира, подобного сапожному вару, — твердому для быстрых изменений и текучему для медленных изменений, эфира как среды, наполненной гироскопами, и т. д. и т. п. По отношению к движущимся телам эфир рассматривался как неподвижная среда, как среда, частично увлекаемая телами, как среда, полностью увлекаемая. Все эти странные, противоречивые гипотезы отнимали у физиков немало сил, и все же ученые даже не ставили такого вопроса: а не бесплодны ли эти попытки? Существует ли вообще эфир?
Читать дальше