Лев Ландау - Физика для всех. Молекулы

Здесь есть возможность читать онлайн «Лев Ландау - Физика для всех. Молекулы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1984, Издательство: Наука, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для всех. Молекулы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для всех. Молекулы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Во второй из четырех книг 'Физики для всех' рассказано о строении вещества, о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их свойства. Читатель знакомится с различными фазовыми состояниями вещества, со структурой и свойствами жидких и твердых растворов, структурой кристаллов и молекул, с основными законами термодинамики.

Физика для всех. Молекулы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для всех. Молекулы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Закон возрастания энтропии - важнейший закон природы. Из него вытекает, в частности, и невозможность построения вечного двигателя второго рода, или, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию. Закон возрастания энтропии является тем же вторым началом термодинамики. Различие формальное, а содержание то же. А самое главное: мы дали второму началу термодинамики трактовку на языке молекул.

В некотором смысле объединение этих двух законов под одну шапку не вполне удачно. Закон сохранения энергии - закон абсолютный. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.

Статистический (это и обозначает относящийся к большому собранию частиц) характер второго начала термодинамики нисколько не принижает его значения. Закон возрастания энтропии предопределяет направление процессов. В этом смысле энтропию можно назвать директором-распорядителем природных богатств, а энергия служит у нее бухгалтером.

Флуктуации

Итак, самопроизвольные процессы ведут систему к наиболее вероятному состоянию - к возрастанию энтропии. После того как энтропия системы стала максимальной, наступает равновесие.

Но это вовсе не означает, что молекулы приходят в состояние покоя. Внутри системы идет интенсивная жизнь. Поэтому, строго говоря, любое физическое тело каждое мгновение "перестает быть самим собой", взаимное расположение молекул в каждое последующее мгновение не такое, как в предыдущее. Таким образом, значения всех физических величин сохраняются "в среднем", они не строго равны своим наиболее вероятным значениям, а колеблются около них. Отклонение от равновесных наиболее вероятных значений называется флуктуацией. Величины разных флуктуации крайне незначительны. Чем больше величина флуктуации, тем она менее вероятна.

Среднее значение относительной флуктуации, т. е. доли интересующей нас физической величины, на которую эта величина может измениться благодаря тепловым хаотическим движениям молекул, может быть примерно представлено выражением l/J/V, где N - число молекул изучаемого тела или его участка. Таким образом, флуктуации заметны для систем, состоящих из небольшого числа молекул, и совсем незаметны для больших телл содержащих миллиарды миллиардов молекул.

Формула 1/ √Nпоказывает, что в одном кубическом сантиметре газа плотность, давление, температура, а также любые другие свойства могут меняться на долю 1/√ 3*10 19, т. е. примерно в пределах 10 -8%. Такие флуктуации слишком малы, чтобы можно было обнаружить их опытом. Однако совсем иначе обстоит дело в объеме кубического микрометра. Здесь N = 3.10 7и флуктуации будут достигать измеримых величин порядка уже сотых долей процента.

Флуктуация представляет собой "ненормальное" явление в том смысле, что она приводит к переходам от более вероятного состояния к менее вероятному. Во время флуктуации тепло переходит от холодного тела к горячему, нарушается равномерное распределение молекул, возникает упорядоченное движение.

Может быть, на этих нарушениях удастся построить вечный двигатель второго рода?

Представим себе, например, крошечную турбинку, находящуюся в разреженном газе. Нельзя ли устроить так, чтобы эта маленькая машина откликалась на все флуктуации какого-либо одного направления? Например, поворачивалась бы, если бы число молекул, летящих вправо, становилось больше числа молекул, движущихся влево. Такие маленькие толчки можно было бы складывать, и в конце концов совершилась бы работа. Принцип невозможности вечного двигателя второго рода был бы опровергнут.

Но, увы, подобное устройство принципиально невозможно. Подробное рассмотрение, учитывающее, что турбинка имеет свои собственные флуктуации, тем большие, чем меньше ее размеры, показывает, что флуктуации вообще не могут произвести какую бы то ни было работу. Хотя нарушения стремления к равновесию возникают беспрерывно вокруг нас, они не могут изменить неумолимого хода физических процессов в сторону, увеличивающую вероятность состояния, т. е. энтропию.

Кто открыл законы термодинамики

Здесь нельзя ограничиться одним именем. У второго начала термодинамики есть свая история.

И здесь, так же как в истории первого начала термодинамики, в первую очередь должно быть упомянуто имя француза Сади Карно. В 1824 г. он издал на свои средства печатный труд под названием "Размышления о движущей силе огня". В этой работе впервые было указание, что тепло не может переходить от холодного тела к теплому без затраты работы. Карно показал также, что максимальный коэффициент полезного действия тепловой машины определяется лишь разностью температур нагревателя и охлаждающей среды.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для всех. Молекулы»

Представляем Вашему вниманию похожие книги на «Физика для всех. Молекулы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для всех. Молекулы»

Обсуждение, отзывы о книге «Физика для всех. Молекулы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x