Лев Ландау - Физика для всех. Молекулы

Здесь есть возможность читать онлайн «Лев Ландау - Физика для всех. Молекулы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1984, Издательство: Наука, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для всех. Молекулы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для всех. Молекулы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Во второй из четырех книг 'Физики для всех' рассказано о строении вещества, о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их свойства. Читатель знакомится с различными фазовыми состояниями вещества, со структурой и свойствами жидких и твердых растворов, структурой кристаллов и молекул, с основными законами термодинамики.

Физика для всех. Молекулы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для всех. Молекулы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Существенное влияние на механические свойства оказывает внутреннее строение материала. Понятно, что трещины и пустоты ослабляют видимую прочность тела и делают его более хрупким.

Замечательна способность пластически деформируемых тел упрочняться. Одиночный кристалл металла, только что выросший из расплава, очень мягок. Кристаллы многих металлов настолько мягки, что их легко согнуть пальцами, но ... разогнуть такой кристалл не удастся. Произошло упрочнение. Теперь этот образец удастся пластически деформировать лишь существенно большей силой. Оказывается, пластичность есть не только свойство материала, но и свойство обработки.

Почему инструмент готовят не литьем металла, а ковкой? Причина понятна: металл, подвергшийся ковке (или прокату, или протяжке), много прочнее литого. Сколько бы ни ковать металл, мы не сумеем поднять его прочность выше некоторого предела, который называют пределом текучести. Для стали этот предел лежит в интервале 30-50 кгс/ мм 2.

Эта цифра означает следующее. Если на проволоку миллиметрового сечения подвесить пудовую гирю (ниже предела), то проволока начнет растягиваться и одно временно упрочняться. Поэтому растяжение быстро прекратится - гиря будет спокойно висеть на проволоке. Если, же на такой проволоке подвесить двух-трех пудовую гирю (выше предела текучести), то картина будет иной. Проволока будет непрерывно тянуться (течь), пока не разорвется. Еще раз подчеркнем, что механическое поведение тела определяется не силой, а напряжением. Проволока сечением в 100 мкм2 будет течь под действием груза 30-50*10 -4кгс, т. е. 3-5 гс.

Дислокации

Доказывать, что пластическая деформация - явление, имеющее огромное значение для практики, значит ломиться в открытую дверь. Ковка, штамповка, получение металлических листов, вытягивание проволок - все это явления, имеющие одну природу.

Мы ничего не могли бы понять в пластической деформации, если бы считали, что кристаллиты, из которых построен металл, являются идеальными осколками пространственных решеток.

Теория механических свойств идеального кристалла была создана еще в начале нашего века. Она расходилась с опытом примерно в тысячу раз. Если бы кристалл был идеальным, то его прочность на разрыв должна была бы быть на много порядков выше наблюдаемой и пластическая деформация требовала бы огромных усилий.

Гипотезы зародились ранее, чем накопились факты. Исследователям было очевидно, что единственным выходом, позволяющим примирить теорию и практику, является допущение о наличии у кристаллитов дефектов. Но, конечно, о характере этих дефектов можно было делать самые различные предположения. Лишь тогда, когда физики вооружились тончайшими методами исследования строения вещества, картина стала проясняться. Оказалось, что идеальный кусок решетки (блок) имеет размеры порядка нескольких миллионных долей сантиметра. Блоки дезориентированы в пределах секунд или минут дуги.

К концу двадцатых годов скопилось много фактов, которые привели к важному утверждению, что главным (хотя и не единственным) дефектом реального кристалла является закономерное смещение, получившее название дислокации. Простая дислокация иллюстрируется модельным рис. 6.6. Как видите, сущность дефекта заключается в том, что в кристалле существуют места, содержащие как бы одну "лишнюю" атомную плоскость. Штриховая линия в середине кристалла на рис. 6.6,а разделяет два блока. Верхняя часть кристалла сжата, а нижняя - растянута. Дислокация быстро рассасывается, как это показано на рис. 6.6, б, изображающем вид на левый рисунок "сверху".

Рис 66 Другие дислокации которые часто встречаются в кристаллах называются - фото 81

Рис. 6.6

Другие дислокации, которые часто встречаются в кристаллах, называются спиральными. Их схемы показаны на рис. 6.7. Здесь решетка разбита на два блока, один из которых своей частью как бы соскользнул на один период по отношению к соседнему. Наибольшие искажения сосредоточены около оси. Область, примыкающая к этой оси, и называется спиральной дисклока-цией.

Мы лучше поймем, в чем сущность искажения, если рассмотрим схему на том же рисунке, изображающую две соседние атомные плоскости по одну и другую сторону плоскости разреза (рис. 6.7, б). По отношению к трехмерному рисунку это вид на плоскости справа. Ось спиральной дислокации та же, что и на трехмерном рисунке. Сплошными линиями показана плоскость правого, пунктирными - левого блока. Черные точки расположены к читателю ближе, чем белые. Как видно из схемы, спиральная дислокация представляет собой иной тип искажения, отличный от простого. Лишнего ряда атомов здесь нет. Искажение состоит в том; что вблизи "оси дислокации атомные ряды меняют своих ближайших соседей, а именно изгибаются и подравниваются к соседям, находящимся этажом ниже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для всех. Молекулы»

Представляем Вашему вниманию похожие книги на «Физика для всех. Молекулы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для всех. Молекулы»

Обсуждение, отзывы о книге «Физика для всех. Молекулы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x