Оцененный выход при выбросе составил 6 X 10 16делений. В начале выброса мощности верхняя половина отражателя из природного урана опускалась на активную зону со скоростью приблизительно 10 см/с, приведя сборку в мгновенное надкритическое состояние. Такая скорость опускания соответствовала скорости ввода реактивности примерно 40 центов/с. Источник 238Pu-Be с интенсивностью испускания 5,2 X 10 6нейтронов в секунду размещался в небольшой полости вблизи центра системы. Реактивная способность при зазоре в 3,0 см, отделяющем положение нижнего отражателя от полного смыкания его с нижней частью активной зоны, была оценена как 2,2 β.
Расследование пришло к заключению, что, хотя специалисты были очень опытными в работе с критическими сборками, именно их чрезмерная уверенность и торопливость привела к потере их жизней. Оба специалиста имели театральные билеты на тот вечер, когда произошла авария. Ответственный руководитель подготавливал процедуру вечерней сборки, пренебрегая основным правилом критической безопасности, которое гласит, что всякая неизвестная система критична. Расследование пришло к выводу, что «авария произошла в результате грубых нарушений правил техники безопасности и действующих инструкций, связанных с недостаточным контролем со стороны вышестоящего руководства и дозиметрической службы».
14. Испытательный полигон Абердин, шт. Мериленд, 6 сентября 1968 г. 61
Быстрый импульсный реактор с металлической уран-молибденовой активной зоной; единичный всплеск мощности; незначительные дозы облучения.
Армейская импульсная реакторная установка (APRFR) была построена в штате Мериленд в США для целей облучения. Это был еще один из серии реакторов, подобных критсборке «Годива». Конструкция реактора APRFR явилась дальнейшим развитием концепции реактора, построенного для исследований в области радиационной безопасности в Окриджской национальной лаборатории. Он предназначался для формирования мощных нейтронных потоков с высокими плотностями нейтронов.
Во время предварительных испытаний по программе оптимизации параметров реактора были изучены некоторые варианты небольшого изменения его конфигурации. Во время этих испытаний произошла неожиданно большая вспышка (6,09 X 10 17делений). Она приблизительно в три раза превышала максимум, который реактор мог выдержать без повреждений. Внутри активной зоны температура дошла до 1150 °C, т. е. до точки плавления топлива. Начальный период составил 9,1 микросекунды, реактивность, по оценкам, на 18 центов превышала уровень критичности на мгновенных нейтронах. Расчетная избыточная реактивность для этой вспышки должна была составлять 8,05 центов, что соответствует энерговыделению в пике, равному 1,68 X 10 17делений.
Последующий анализ аварии показал, что избыточная реактивность была результатом возникшей конфигурации реактора: стержень, с помощью которого инициировалась вспышка, вносит максимальную реактивность на пути движения до того, как он достигнет конечного положения. Никто не предполагал, что может возникнуть такое состояние. По-видимому, в предыдущих случаях стержень, инициирующий вспышки, успевал достичь конечной позиции до того, как появлялся инициирующий реакцию нейтрон. Если нет сильного внешнего источника нейтронов, время для развития всплеска мощности может быть долгим.
Были повреждены топливные компоненты реактора, некоторые части были деформированы, растрескались, вытянулись болты. Четыре центральных кольца сплавились друг с другом по внутренней поверхности и местами растрескались.
Не было измеряемых уровней радиоактивного загрязнения и аэрозольной активности за пределами здания. Переоблучения персонала также не было.
15. ВНИИЭФ, г. Саров (Арзамас-16), 17 июня 1997 г. 50, 62, 63, 64
Стенд для исследования характеристик простых критических сборок (ФКБН-2М), активная зона (центральная часть сборки) из урана-235 (90 %) с медным отражателем, сборка вручную; один человек погиб.
Стенд ФКБН-2М предназначен для изучения ядерно-физических характеристик простых критических сборок. Стенд расположен в экспериментальном зале размером 12 X 10 X 8 м в отдельном здании реакторной площадки, удаленной от жилой зоны на ~7 км. Схема расположения экспериментального оборудования приведена на рисунке 54.
Схема стенда приведена на рисунке 55. Исследуемые сборки (размножающие системы (РС)) разделяются на 2 части. Нижняя часть РС собирается на столе, который может перемещаться вверх и вниз в вертикальном направлении. Верхняя часть РС собирается на каретке, которая может перемещаться в горизонтальной плоскости и надвигаться в положение над столом с нижней частью РС. Процедура сборки представляет собой последовательное вложение одного в другой полусферических слоев различных материалов, как в кукле-матрешке. Для проведения разнообразных экспериментов имеются наборы полусфер из различных делящихся (уран, плутоний) и инертных (сталь, медь, полиэтилен и т. д.) материалов стандартизованных размеров.
Читать дальше