Найденное Вильсоном максимальное значение заряда было вдвое больше минимального. Для ищущего истину такой результат неутешителен.
Этап пятый. 1909 год. Р. А. Милликен.
Вслед за Вильсоном Милликен сделал несколько шагов вперед на пути к точной формулировке вопроса. Его опыты — их логика и исполнение — исключительно умны и красивы.
Существуют естествоиспытатели, которые пытаются увидеть явление в целом, посмотреть на него с неожиданной стороны. Они легко и точно улавливают связи нового явления с известными, ставят эксперимент так хитро и неожиданно, что поиск заканчивается очень убедительным доказательством факта существования явления. Это очень ценная и нужная категория исследователей, но в их лабораториях устанавливаются факты лишь качественно, выяснение точных характеристик явления их мало заботит. Милликен относится к принципиально иной категории исследователей. Я очень внимательно читал его книгу — подробный отчет об экспериментах с заряженными каплями, и меня не покидало чувство восхищения перед великолепным экспериментальным мастерством, скрупулезным в такой мере, что иному оно может показаться выражением не столько оправданной тщательности, сколько болезненной придирчивости. Его предшественники, по существу, в своих опытах могли определять лишь статистически среднюю величину зарядов, поскольку они не отличали каплю, образовавшуюся на однозарядном ионе, от той, которая сформировалась на ионе многозарядном, так как экспериментировали с облаком — ансамблем капель различных и по величине и по заряду. Милликен решил экспериментировать с одной каплей, подолгу удерживая ее между пластинами конденсатора.
Вначале и Милликен экспериментировал с водяными каплями. Все, что с ними может происходить, он подробнейшим образом исследовал. Для надежной обработки результатов измерений необходимо точно знать размер капель, и Милликен его определял по скорости падения капли в воздухе. Между экспериментально найденной скоростью и значением радиуса — расчет по формуле Стокса. Возникает сомнение: быть может, эта формула ненадежна в применении к микроскопическим каплям? Милликен ставит сотни опытов с целью внести нужные поправки в формулу Стокса и достигает необходимой точности в определении радиуса. Вот одно из значений радиуса капли, изучавшейся Милликеном: 0,000197 см.
Капля может в процессе измерения испаряться, терять массу. Ставится такой опыт. Одна заряженная капля уравновешивается полем и останавливается между пластинами конденсатора. Со временем капля начинает подниматься вверх. Это значит, что, частично испарившись, она стала легче, и сила, создаваемая электрическим полем, начинает превосходить силу тяжести. В опыте поле уменьшается ровно настолько, чтобы капля опять стала неподвижной. Измерив необходимое для этого уменьшение напряженности поля, Милликен определяет скорость испарения капли и учитывает ее при обработке результатов измерений.
Во время опыта капля может изменить свой заряд. Ставятся специальные опыты для исследования этой возможности. Ведется длительное наблюдение за движущейся каплей и устанавливается, что в случайные моменты времени капля скачкообразно меняет скорость своего падения,— это естественно объясняется потерей или приобретением заряда. Становится ясным, что скачкообразные изменения скорости оказываются в точности такими, какими они должны быть, если заряд может принимать лишь значения, кратные некоторому минимальному. Наблюдаются капли, несущие самое различное число элементарных зарядов — от 1 до 150. Так как точность измерения ограничена, то при большем числе зарядов изменение их числа наблюдается с меньшей достоверностью. Однако, как пишет Милликен, «когда число их не превышает пятидесяти, то ошибка тут так же невозможна, как и при подсчете собственных пальцев». Эти опыты — безусловное основание для Милликена утверждать, что электрический заряд «обладает резко выраженным зернистым строением».
Милликен оказался тем счастливым естествоиспытателем, который сумел надежно доказать «зернистость» электрического заряда и определить число —заряд «зернышка»— электрона. Вот это число: е = (4,770 + 0,005)•10 -10электростатических единиц. Указана оправданная погрешность измерения, и это придает числу достоверность.
Столяру Джузеппе попалось под руку полено, которое пищало человеческим голосом.
Читать дальше