Если задаться вопросом, в чем же в таком случае заслуга Таундсенда, которому не удалось пойти вперед по сравнению с гальваническими опытами, и почему его деятельность выделена в отдельный этап, ответить следовало бы так: в том, что он обратился к капле. Он понял, что макроскопическая капля — ведь даже если ее диаметр всего один микрон, она макроскопическая по сравнению с электроном — может помочь в поисках истины.
Этап третий. 1897 год. Дж. Дж. Томсон.
Томсон немного усовершенствовал приемы Таундсенда, сохранив основную идею эксперимента практически неизменной. Ионы он получал не в электролизере, а с помощью непрерывно работающей рентгеновской трубки. В те дни только-только стало известно, что рентгеновские лучи способны ионизировать воздух, и Томсон воспользовался новинкой. И еще одну совершенно «свежую» новинку применил Томсон. Незадолго перед его опытами стали известны результаты одного из его сотрудников — Ч. Т. Р. Вильсона, который показал, что внезапное расширение воздуха, содержащего влагу, приводит к образованию капель на ионах. Именно так Томсон и создавал капли. Он поставил эксперимент на более современном уровне, чем( Таундсенд, но, к сожалению, не улучшил, а, быть может, ухудшил условия его эксперимента, добавив пятый источник сомнений: так как капли возникали вследствие резкого охлаждения воздуха, есть основания подозревать, что за время, пока их температура уравнивается с температурой среды, они могут частично испаряться.
Томсон это, конечно, понимал, но, видимо, надеялся на то, что «в-пятых» себя не успеет проявить за время измерения и что, сравнивая упругость пара до и после внезапного расширения объема камеры, он точнее, чем Таундсенд, определит общую массу облака. Найденное им значение е лежало в интервале (5,5—8,4) •10 -10 электростатических единиц. Томсон задал природе вопрос, быть может, в немного более изощренной форме, но от этого вопрос четче не прозвучал. И ответ оказался расплывчатым и, как увидим, далеким от числа.
Этап четвертый. 1903 год. Г. А. Вильсон (не Ч.Т.Р., а Г. А. Вильсон. Ч.Т.Р Вильсон в те годы неотступно продолжал исследование поведения капель в туманной камере).
Г. А. Вильсон сделал огромный шаг на пути к достоверному измерению заряда электрона. Начал он с усовершенствования методики. В камере, где находилось облако капель, сконденсированных на ионах, Вильсон параллельно располагал две латунные пластинки, к которым можно было подключить полюсы источника напряжения 2000 в. Экспериментальная процедура Вильсона состояла из последовательности двух опытов. В первом опыте, получая резким расширением облако заряженных капель (как это делал и Томсон), он определял скорость его падения ( υ 1 ) в пространстве между латунными пластинками в отсутствие электрического поля. Во втором опыте он проделывал то же, однако в этом случае электрическое поле было включено и капли в облаке падали со скоростью υ 2 не только под влиянием одной лишь силы тяжести т g , как в первом случае, а под влиянием двух сил mg + еЕ, где Е — напряженность электрического поля. В обоих опытах Вильсон наблюдал не за всем облаком, а лишь за теми каплями, которые находятся в его вершине. Капли в вершине облака несут на себе самый маленький заряд, а следовательно, и испытывают на себе действие самой маленькой силы.
Должно иметь место равенство:

Но почему скорости, а не ускорения пропорциональны силам? Дело в том, что речь идет об установившемся движении в среде, когда ускорение равно нулю, а величина скорости пропорциональна силе,— это следует из формулы Стокса, которую в очерке о капле-шарике я просил запомнить, так как далее она понадобится. Именно здесь она и понадобилась.
В правой части формулы все известно, кроме массы капель. Как и его предшественник, Г. А. Вильсон определял массу капель, предварительно найдя их радиус по формуле Стокса, т. е. по скорости ее свободного падения в воздухе. Так Вильсон сумел обойтись без произвольного допущения своих предшественников, которые предполагали, что число капелек равно числу отрицательных ионов. Сформулированный им вопрос природе звучит четче. К сожалению, однако, достаточно было оставшихся в эксперименте неточностей, чтобы на ответ наложились помехи. Вильсон, например, предполагал, что в двух последовательных расширениях камеры (ему для нахождения υ 1 и υ 2 нужны были два расширения!) возникают облака, абсолютно совпадающие по характеристикам. В действительности это не так хотя бы потому, что вариант, при котором облака будут идентичны, единственный, а вариан там, при которых они будут отличаться, нет числа! Кроме того, за время падения водяные капельки могли немного испаряться или, например, мелкие капли могли исчезать, съедаемые более крупными.
Читать дальше