Таков результат первого этапа рассуждений Кельвина.

К расчету влияния кривизны поверхности жидкости на давление пара над ней
Второй этап — естественное продолжение первого. Над всей поверхностью жидкости — и той, которая в трубке, и той, которая в широком сосуде,— имеется пар этой жидкости, однако не везде давление, оказываемое им на жидкость, одинаково: несколько большим оно будет над поверхностью жидкости в трубке, так как слой пара над ней толще на величину h . Очевидно, дополнительное давление этого слоя равно Δ Р = ρ 0 gh, где ρ 0 — плотность газа, которая много меньше плотности жидкости. Величину h мы знаем — она была найдена на первом этапе рассуждений — и, следовательно, можем определить величину Δ Р. Она очень важна, и поэтому формулу, которая определяет эту величину, мы вынесем на отдельную строку:

По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».
Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жидкости капилляр и т. д. А пришел к закону природы огромной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуждался. Разве что только R — радиус тонкой трубочки. Но ведь трубочка, как оказалось, нужна была только для
того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.
Вспомним о капле — она вся ограничена изогнутой поверхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельвина: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйнштейном, восхитимся талантом Кельвина — его проницательным умом и великолепной логикой.
Много лет подряд вместе с моим покойным учителем Борисом Яковлевичем Пинесом мы занимались изучением пористых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожалению, спросить уже некого и остается лишь строить догадки, сопоставляя факты и отрывки случайных разговоров.
Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыслить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рождения образа капли пустоты можно проследить, как вяжется логическое кружево мысли ученого, где сосуществуют и конкурируют фантазия и строгая формальная логика.
Борис Яковлевич не очень был склонен к аналогиям, упрощенным моделям, картинам, иллюстрирующим мысль. Он часто повторял, что картина — образование двумерное и, следовательно, неглубокое. Аналогия может появиться позже, а вначале должна быть формула, численная оценка. И еще, посмеиваясь, он любил говорить о том, что иных формулы гипнотизируют, поскольку формула — это математика, а математика, как известно, наука точная. Это преувеличенное почтение к формулам обычно испытывают люди, которые никогда не создавали их и поэтому не чувствуют ни их слабостей, ни таящихся в них возможностей.
Первая работа Бориса Яковлевича, посвященная изучению поведения пор в кристаллах (она появилась еще в 1946 году), начинается с анализа давно известной формулы лорда Кельвина, которая устанавливает связь между давлением пара вблизи изогнутой поверхности капли ( Р R ), ее радиусом ( R ) и давлением пара вблизи плоской поверхности жидкости, из которой капля состоит ( Р 0 ). Вот эта формула:

В нее входят величины поверхностного натяжения ( α ), объема, приходящегося на один атом в жидкости ( ω ), температуры ( Т ) и некоторая постоянная величина к , так называемая постоянная Больцмана.
Читать дальше