Мы должны, конечно, предположить существование таких элементарных действий, как прохождение электронов или фотонов через отверстия. Существование элементарных квантов вещества и энергии не может, конечно, вызывать сомнения. Ясно, что законы, управляющие ими, не могут быть сформулированы путем определения координат и скоростей в любой момент по простому методу классической механики.
Поэтому попробуем нечто другое. Будем непрерывно повторять одни и те же элементарные процессы. Пусть электроны посылаются один за другим по направлению к двум крошечным отверстиям. Слово «электрон» употребляется здесь ради определенности; наши рассуждения справедливы также и для фотонов.
Один и тот же эксперимент повторяется много раз совершенно одинаковым образом; все электроны имеют одинаковую скорость и движутся в направлении к двум отверстиям. Едва ли нужно напоминать, что это идеализированный эксперимент, который нельзя выполнить в действительности, но который легко можно себе представить. Мы не можем выстреливать отдельные фотоны или электроны в заданные моменты времени, подобно пулям из ружья.
Результатом серии повторенных экспериментов снова должны быть темные и светлые кольца в случае одного отверстия и темные и светлые полосы в случае двух. Но имеется одно существенное отличие. В случае одного отдельного электрона результат эксперимента был непонятен. Его легче понять, когда эксперимент повторяется много раз. Теперь мы можем сказать, что светлые полосы появляются там, где падает много электронов. Полосы становятся темнее в тех местах, в которых падает меньше электронов. Совершенно темное пятно означает, что в это место не попал ни один из электронов. Мы, конечно, не можем считать, что все электроны проходят через одно из отверстий. Если бы это было так, то было бы безразлично, закрыто другое отверстие или нет. Но мы уже знаем, что в том случае, когда второе отверстие закрыто, мы получаем совершенно другой результат. Так как частица неделима, мы не можем представить себе, что она проходит через оба отверстия. Тот факт, что эксперимент был повторен много раз, указывает на другой выход. Некоторые электроны могли пройти через первое отверстие, а другие — через второе.
Мы не знаем, почему каждый отдельный электрон выбирает то или иное отверстие, но конечный результат целой серии экспериментов должен показать, что оба отверстия участвуют в пропуске электронов от источника к экрану. Если мы устанавливаем только то, что происходит с совокупностью электронов, когда эксперимент повторяется, не обращая внимания на поведение индивидуальных частиц, то различие между двумя картинами — дифракционные кольца и дифракционные полосы — становится понятным. Рассмотрение последовательности экспериментов породило новую идею о совокупности, состоящей из индивидуальностей, поведение которых нельзя предсказать.
Мы не можем предсказать поведение одного электрона, но мы можем предсказать, что в конечном счете на экране будут появляться светлые и темные полосы.
Оставим на время квантовую физику.
В классической физике мы видели, что, если мы знаем координаты и скорость материальной точки в известный момент времени и действующие на нее силы, мы можем предсказать ее будущую траекторию. Мы видели также, как механистическая точка зрения применялась к кинетической теории вещества. Но в этой теории из наших рассуждений возникает новая идея. Для полного понимания последующих доводов полезно обсудить эту идею более подробно.
Пусть имеется сосуд, содержащий газ. При попытке проследить движение каждой частицы нужно было бы начать с нахождения начальных состояний, т. е. начальных координат и скоростей всех частиц. Даже если бы это было возможно, то человеческой жизни не хватило бы и для того только, чтобы записать результат на бумаге, так как нужно было бы рассмотреть огромное количество частиц. Если бы мы затем попытались применить известные методы классической механики для подсчета конечных положений частиц, трудности были бы непреодолимы. Принципиально возможно воспользоваться методом, применяемым для рассмотрения движения планет, но практически этот метод бесполезен и должен уступить место статистическому методу. Этот метод не требует какого-либо точного знания начальных состояний. Мы меньше знаем о системе в любой данный момент и, следовательно, имеем меньше возможностей сказать что-либо о ее прошлом или будущем. Нам безразлична судьба отдельных частиц газа. Наша задача другого характера. Мы, например, не спрашиваем: «Какова скорость каждой частицы в данный момент?» Но мы спрашиваем: «Сколько частиц имеют скорость между 1000 и 1100 метрами в секунду?» Мы не заботимся об отдельных индивидуумах. То, что мы желаем определить, суть средние значения, характеризующие всю совокупность. Ясно, что статистический метод имеет смысл лишь тогда, когда система состоит из очень большого числа индивидуумов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу