Альберт Эйнштейн - Эволюция физики

Здесь есть возможность читать онлайн «Альберт Эйнштейн - Эволюция физики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1954, Издательство: Издательство Академии наук СССР, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эволюция физики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эволюция физики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге дается "представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями", в ней показано, как каждая последующая, уточненная картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и ее основных тенденций развития, которые в конечном счете ведут к созданию единой физической теории.
Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздается в различных странах.

Эволюция физики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эволюция физики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вообразим пучок электронов, движущихся равномерно с заданной скоростью, или, если употреблять волновую терминологию, однородную электронную волну и предположим, что она падает на очень тонкий кристалл, играющий роль дифракционной решетки.

Расстояния между дифрагирующими элементами в кристалле настолько малы, что может происходить дифракция рентгеновских лучей. Можно ожидать аналогичного эффекта и для электронных волн, имеющих длину волны того же порядка. Фотографическая пластинка должна зарегистрировать эту дифракцию электронных волн, проходящих через тонкий слой кристалла. Эксперимент и в самом деле обнаруживает явление дифракции электронных волн, что, несомненно, является большим достижением теории. Подобие между дифракцией электронных волн и дифракцией рентгеновских лучей особенно заметно из сравнения их фотографий (см. рис. 80 и 85).

Рис 85 Дифракция электронных волн Фотография Лориа и Клингера Мы знаем что - фото 85

Рис. 85. Дифракция электронных волн (Фотография Лориа и Клингера)

Мы знаем, что такая картина позволяет нам определить длину волны рентгеновских лучей. Это остается в силе и для электронных волн. Дифракционная картина дает длину этих волн, а полное количественное согласие теории и эксперимента блестяще подтверждает правильность наших рассуждений.

Эти результаты расширили и углубили наши прежние трудности. Это можно уяснить с помощью примера, аналогичного тому, что использован для световой волны. Электронный снаряд при очень малом отверстии будет отклоняться подобно световой волне. На фотографической пластинке обнаруживаются светлые и темные кольца. Есть некоторая надежда объяснить эти явления взаимодействием между электроном и краем отверстия, хотя такое объяснение не кажется очень многообещающим. Но что происходит в случае двух отверстий? Вместо колец появляются полосы. Почему же присутствие второго отверстия полностью изменяет эффект? Электрон неделим и может, казалось бы, пройти лишь через одно из двух отверстий. Как мог электрон, проходя через отверстие, знать, что на некотором расстоянии находится другое отверстие?

Раньше мы спрашивали: что такое свет? Является ли он потоком корпускул или волнами? Теперь мы спрашиваем: что такое вещество, что такое электрон? Частица ли он или волна? Электрон ведет себя подобно частице, когда он движется во внешнем электрическом или магнитном поле. Он ведет себя подобно волне, когда дифрагирует, проходя сквозь кристалл. С элементарным квантом вещества мы прошли через те же трудности, которые встретили, изучая кванты света.

Одним из наиболее фундаментальных вопросов, поставленных современными успехами науки, является вопрос о том, как согласовать два противоречивых взгляда на вещество и волну. Это одна из тех фундаментальных трудностей, которые, раз уж они сформулированы, должны привести, хотя и длинным путем, к прогрессу науки. Физика старалась разрешить эту проблему. Будущее покажет, является ли решение, подсказанное современной физикой, окончательным или же временным.

Волны вероятности

Согласно классической механике, если мы знаем положение и скорость данной материальной точки, а также внешние действующие силы, мы можем предсказать на основе законов механики весь ее будущий путь. В классической механике утверждение «Материальная точка имеет такие-то координаты и скорость в такой-то момент» заключает в себе вполне определенный смысл. Если бы это утверждение потеряло свой смысл, то наши рассуждения о предсказании будущего пути были бы ошибочны.

В начале XIX столетия ученые хотели свести всю физику к простым силам, действующим на частицы вещества, обладающие определенными координатами и скоростями в некоторый момент времени. Вспомним, как мы описывали движение, когда рассматривали механику в начале нашего путешествия по царству физических проблем. Мы нарисовали точки вдоль определенного пути, показывающие точные положения тела в определенные моменты времени, а затем провели векторы, показывающие направления и величины скоростей. Это было просто и убедительно. Но это нельзя повторить для элементарных квантов вещества — электронов или для квантов энергии — фотонов. Мы не можем нарисовать путешествие фотона или электрона таким же образом, как мы изображали движение в классической механике. Пример с двумя булавочными отверстиями показывает это очень ясно. Кажется, что электрон и фотон должны пройти через оба отверстия. Но так невозможно объяснить эффект, рисуя путь электрона или фотона в старом, классическом смысле.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эволюция физики»

Представляем Вашему вниманию похожие книги на «Эволюция физики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эволюция физики»

Обсуждение, отзывы о книге «Эволюция физики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x