В 1966 г. академик Л. Ф. Верещагин получил искусственные алмазы размером 3–4 мм , пригодные для работы в буровых инструментах. Одновременно был синтезирован еще один сверхтвердый материал — кубический нитрид бора (боразон). По своей твердости он несколько уступает алмазу, но зато является более устойчивым к влиянию высоких температур. Это делает боразон весьма ценным в техническом отношении материалом.
СВЕРХТЕКУЧЕСТЬ ЖИДКОГО ГЕЛИЯ
Советские физики сделали весьма крупный вклад в изучение физики низких температур.
Академик П. Л. Капица создал новый тип машин для производства жидкого воздуха — турбодетандеры, работающие при низких давлениях. Эти машины получили в дальнейшем весьма широкое распространение.
Академик Л. Д. Ландау разработал теорию перехода металлов в сверхпроводящее состояние. Этот переход происходит не мгновенно, а через так называемое промежуточное состояние, являющееся своеобразной смесью сверхпроводящих и несверхпроводящих слоев. Наличие таких слоев в металле в условиях переходного состояния было подтверждено членом-корреспондентом АН СССР А. И. Шальниковым в исключительно тонких экспериментах.
В 1957 г. академик Н. Н. Боголюбов разработал (одновременно с американскими физиками Бардиным, Купером и Щрифером) теорию сверхпроводимости.
Развитая академиками Л. Д. Ландау и В. Л. Гинзбургом и членами-корреспондентами АН СССР А. А. Абрикосовым и Л. П. Горьковым теория сверхпроводящих сплавов (так называемый «метод ГЛАГ») открывает путь к получению сверхпроводников, пригодных для различных практических применений.
В этом разделе мы остановимся подробнее на замечательном открытии, сделанном академиком Петром Леонидовичем Капицей, — сверхтекучести жидкого гелия.
Если охладить гелий до температуры T =4,8° К, он превращается в легкую прозрачную жидкость. Имея крайне малую теплоемкость, эта жидкость непрерывно кипит вследствие небольшого притока тепла даже в условиях специальной тепловой изоляции. Понизив температуру жидкого гелия до 2,19° К, можно убедиться, что кипение мгновенно прекращается. Оказывается, что ниже 2,19° К жидкий гелий приобретает особые свойства — он становится единственной известной нам квантовой жидкостью. Принято говорить, что при этой температуре гелий-I (обычный гелий) переходит в гелий-II. Все жидкости затвердевают задолго до того, как в них начнут проявляться квантовые свойства. Только гелий-II остается жидким даже при температурах, максимально близких к абсолютному нулю.
Голландский физик Кеезом, один из первых исследователей гелия-II, в 1936 г. показал, что теплопроводность гелия-II, измеренная в капиллярах, намного выше теплопроводности меди или серебра — наиболее теплопроводных металлов. Поэтому Кеезом назвал гелий-II сверхтеплопроводным веществом.
В 1937 г. академик П. Л. Капица повторил опыты Кеезома, видоизменив методику измерения, и получил для гелия-II еще более высокое значение теплопроводности. Расчеты показали, что она намного превышает максимальное значение теплопроводности, которую мог бы иметь гелий-II исходя из обычных представлений о механизме передачи тепла этим способом. Тогда П. Л. Капица обратился к другому возможному механизму передачи тепла в жидкости — к конвекции. Более нагретая часть жидкости имеет меньшую плотность и как бы всплывает к поверхности, в то время как менее нагретая и более плотная часть опускается на дно. Очевидно, причиной, вызывающей эти движения, является действие силы тяжести. Подсчеты показали, что если истинной причиной сверхбыстрого распространения тепла в гелии-II является конвекция, то конвекционные потоки в нем должны возникать и распространяться с чрезвычайной легкостью. А это означало бы, что вязкость гелия-II ничтожна. Поставленные опыты подтвердили, что она меньше чем 10 −11пуаза (для сравнения укажем, что вязкость воды при комнатной температуре равна 10 −2пуаза). Таким образом, гелий-II оказался в миллиард раз более текучей жидкостью, чем вода. Это и позволило П. Л. Капице назвать его сверхтекучим.
Продолжая, исследования, П. Л. Капица показал, что обычный механизм конвекции под влиянием силы тяжести к гелию-II неприменим. Этой силы просто недостаточно, чтобы обеспечить столь большую передачу тепла, которая наблюдается в эксперименте. Затем были поставлены опыты, которые, казалось бы, еще более запутали и осложнили ситуацию (забегая несколько вперед, заметим, что именно они и помогли найти правильное решение проблемы).
Читать дальше