Можно ли остановить движение вихревых нитей?
Оказывается, для этого сверхпроводящий образец должен, например, содержать неоднородности. Вихревые нити притягиваются к таким неоднородностям и задерживаются на них.
Явление получило название — пиннинг (от английского: pinning — закрепление).
Отдельные вихреватые нити, закрепляясь на неоднородностях, взаимодействуют с другими вихревыми нитями и останавливают их движение.

С увеличением силы тока, протекающего через образец, увеличивается и сила, действующая на вихрь. Когда эта сила становится достаточной для того, чтобы преодолеть закрепление, вихревые нити приходят в движение.
В сверхпроводниках второго рода, содержащих неоднородности, образованные, например, в результате пластической деформации, критический ток относительно большой. Такие образцы получили название жестких сверхпроводников.
В современных сверхпроводящих установках преимущественно применяются жесткие сверхпроводники второго рода.
Из чистых металлов самое большое критическое магнитное поле (около 0,2 тесла) имеет ниобий. У сплава ниобий — титан или ниобий — цирконий верхнее критическое поле составляет 13 тесла, то есть величину в 65 раз большую, а критическая плотность тока достигает 500 тысяч ампер на квадратный сантиметр!
Критическая температура сплава ниобий — титан равна 10,ЗК, в то время как ни у одного из чистых металлов критическая температура не достигает 10К.
Уже получено свыше тысячи сверхпроводящих сплавов и химических соединений. Любопытно, что ни одна из составляющих, например, такого сверхпроводящего сплава, как золото — висмут, в чистом виде сверхпроводящими свойствами не обладает.
Исследователи стремятся получить сверхпроводящие металлы и сплавы с возможно высокой критической температурой и возможно большими критическим полем и критическим током.
У сверхпроводящего сплава ниобий — олово верхнее критическое поле и плотность тока вдвое больше, чем у упомянутых выше сплавов, а критическая температура равна 18,ЗК.
К сожалению, сплав ниобий — олово очень хрупкий. Намотать на катушку провод из такого сплава весьма трудно.
Поэтому сплав изготавливается чаще всего непосредственно на катушке соленоида. На нее наматываются образцы исходных материалов сплава: ниобия и оловянной бронзы. При нагревании до температуры 700 °C олово из бронзы диффундирует в ниобий. Получается искомый сплав.
Еще большее верхнее критическое поле — 35 тесла — имеет сплав ниобий — германий. Его критическая температура 23,4К до недавнего времени считалась рекордной.
Ученые и инженеры успешно освоили технологию изготовления проводов из сплавов ниобий — титан и ниобий — олово. Эти сплавы являются основными материалами для сверхпроводящих магнитных систем.
Сверхпроводящий соленоид представляет собой охлаждаемую жидким гелием катушку сверхпроводящего провода, оба конца которой замкнуты накоротко. Циркулирующий в катушке незатухающий электрический ток создает мощное магнитное поле. Сейчас уже часто используются сверхпроводящие соленоиды с магнитным полем 10 тесла.
Для создания такого поля с помощью катушки с медным проводом требуется мощный генератор и громоздкая система водяного охлаждения. Такая установка представляет собой сложное инженерное сооружение.
А катушка одного из образцов сверхпроводящего соленоида с полем 10 тесла имеет диаметр всего 6 сантиметров. Затрата мощности при эксплуатации такого соленоида, определяемая в основном затратой энергии для поддержания катушки при температуре жидкого гелия, составляет всего 5 киловатт. Это в тысячу раз меньше энергии, затрачиваемой для получения аналогичного поля с помощью обычного соленоида.
В нашей стране создаются сверхпроводящие соленоиды с полем в 30 тесла. Но это не предел. Поиски сверхпроводящих материалов с возможно большим критическим полем продолжаются.
Большие критические магнитные поля достигнуты в сверхпроводящих соединениях на основе сульфидов молибдена. У одного из таких соединений критическое поле превышает 60 тесла.
Преимущества сверхпроводящих магнитов не ограничиваются возможностью получения мощных полей при минимальной затрате энергии. Наведенный в короткозамкнутой обмотке ток сохраняет свою величину сколь угодно долгое время. Создаваемое при этом магнитное поле отличается высокой стабильностью и однородностью в достаточно большей области пространства, что особенно важно для ряда научных и практических применений.
Читать дальше