Допустим, что мы намеренно модифицируем программу, передающую геометрию Евклида, так, что генератор виртуальной реальности по-прежнему будет передавать круги достаточно хорошо, но менее, чем совершенно. Разве мы не смогли бы сделать какой-либо вывод о совершенных кругах, ощущая эту несовершенную передачу? Это полностью зависело бы от того, знали бы мы, в каких отношениях была изменена программа или нет. Если бы мы это знали, мы могли бы с определенностью решить (за исключением грубых ошибок и т.д.), какие аспекты ощущений, полученных нами внутри машины, представляли совершенные круги точно, а какие неточно. И в этом случае знание, которое мы приобрели там, было бы так же надежно, как и любое знание, которое мы приобрели бы, используя правильную программу.
Представляя круги, мы осуществляем передачу в виртуальной реальности почти такого же рода в своем мозге. Причина того, почему этот способ мышления о кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет.
Используя совершенную передачу в виртуальной реальности, мы могли бы получить впечатление о шести идентичных кругах, которые касаются кромки седьмого идентичного им круга в плоскости, не перекрывая друг друга. Это впечатление при подобных обстоятельствах было бы эквивалентно точному доказательству возможности такой ситуации, потому что геометрические свойства переданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид «практического» взаимодействия с совершенными формами не способен дать всестороннее знание геометрии Евклида. Большая часть интересных теорем относится не к одной геометрической форме, а к бесконечным классам геометрических форм. Например, сумма углов любого треугольника Евклида равна 180°. Мы можем измерить отдельные треугольники с совершенной точностью в виртуальной реальности, но даже в виртуальной реальности мы не можем измерить все треугольники, и поэтому мы не можем проверить теорему.
Как же мы можем ее проверить? Мы доказываем ее. Традиционно доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физически эквивалентен процесс доказательства? Чтобы доказать утверждение о бесконечно большом количестве треугольников сразу, мы исследуем определенные физические объекты (в данном случае символы), которые обладают общими свойствами с целым классом треугольников. Например, когда при надлежащих обстоятельствах мы наблюдаем символы «r АВС= r DEF » (т. е. «треугольник АВС конгруэнтен треугольнику DEF»), мы делаем вывод, что все треугольники из какого-то определенного конкретным образом класса всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определенного иначе. «Надлежащие обстоятельства», которые придают этому выводу статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (некоторые из которых представляют аксиомы геометрии Евклида), и порядок появления символов соответствует определенным правилам, а именно, правилам вывода.
Но какими правилами вывода нам следует пользоваться? Это все равно, что спросить, как следует запрограммировать генератор виртуальной реальности для передачи мира геометрии Евклида. Ответ в том, что нужно использовать те правила вывода, которые, для нашего лучшего понимания, заставят наши символы вести себя в уместной степени как абстрактные категории, которые они обозначают. Как мы можем быть уверены, что они будут вести себя именно так? А мы и не можем быть уверены в этом. Предположим, что некоторые критики возражают против наших правил вывода, потому что они считают, что наши символы будут вести себя отлично от абстрактных категорий. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (за исключением теоремы Геделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого метода доказательства, используемого нами). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, потому что наша интуиция говорит, что символы будут копировать абстрактные категории в совершенстве. Все, что мы можем сделать, – это объяснить. Мы должны объяснить, почему мы думаем, что при определенных обстоятельствах символы будут вести себя желаемым образом в соответствии с высказанными нами правилами. А критики могут объяснить, почему они предпочитают теорию, конкурирующую с нашей. Расхождение во мнениях относительно двух таких теорий – это частично расхождение во мнениях относительно наблюдаемого поведения физических объектов. Такого рода расхождения могут быть адресованы нормальными методами науки. Иногда они легко разрешимы, а иногда – нет. Другой причиной подобного расхождения может стать концептуальный конфликт, связанный с природой самих абстрактных категорий. И вновь дело за конкурирующими объяснениями, на этот раз объяснениями не физических объектов, а абстрактных категорий. Либо мы придем к общему пониманию со своими критиками, либо согласимся, что говорим о двух различных абстрактных объектах, либо вообще не придем к согласию. Нет никаких гарантий. Таким образом, в противоположность традиционному убеждению, споры в математике не всегда можно разрешить с помощью исключительно методологических средств.
Читать дальше
Конец ознакомительного отрывка
Купить книгу