Следующая глава, вероятно, приведет в ярость многих математиков. С этим ничего не поделаешь. Математика – это не то, чем они ее считают.
(Читатели, не знакомые с традиционными допущениями относительно определенности математического знания, могут посчитать главный вывод этой главы таковым, что наше знание математической истины зависит от нашего знания физического мира, и не более надежно, чем это знание является очевидным. Возможно, эти читатели предпочтут только просмотреть эту главу и сразу же перейти к обсуждению времени в главе 11).
Глава 10
Природа математики
«Структура реальности», которую я описывал до сих пор, была структурой физической реальности. Тем не менее, я свободно ссылался на такие категории, которых нет нигде в физическом мире, – абстракции, такие как числа и бесконечные множества компьютерных программ. Да и сами законы физики нельзя отнести к физическим категориям в том смысле, в каком к ним относятся камни и планеты, Как я уже сказал, «Книга Природы» Галилео – всего лишь метафора. И кроме того, существует вымысел виртуальной реальности, несуществующие среды, законы которых отличаются от реальных физических законов. За пределами этих сред находится то, что я назвал средами «Кантгоуту», которые невозможно передать даже в виртуальной реальности. Я сказал, что существует бесконечно много таких сред для каждой среды, которую можно передать. Но что значит сказать, что такие среды «существуют»? Если они не существуют ни в реальности, ни даже в виртуальной реальности, то где они существуют?
А существуют ли абстрактные нефизические категории вообще? Являются ли они частью структуры реальности? В данной ситуации меня не занимают проблемы простого использования слов. Очевидно, что числа, физические законы и т. д. действительно «существуют» в некотором смысле и не существуют в другом. Независимо от этого возникает следующий вопрос: как мы должны понимать такие категории? Какие из них являются всего лишь удобной формой слов, которые, в конечном счете, ссылаются на обычную физическую реальность? Какие из них всего лишь преходящие особенности нашей культуры? Какие из них произвольны, как правила банальной игры, которые нужно только посмотреть в приложении? А какие, если такие вообще есть, можно объяснить только, если приписать им независимое существование? Все, что относится к последнему виду, должно быть частью структуры реальности, как она определяется в этой книге, потому что это необходимо понять, чтобы понять все, что понято.
Это говорит о том, что нам снова следует воспользоваться критерием доктора Джонсона. Если мы хотим знать, действительно ли существует данная абстракция, мы должны спросить, «дает ли она ответную реакцию» сложным, автономным образом. Например, математики характеризуют «натуральные числа» 1, 2, 3,... – прежде всего – точным определением:
1 – это натуральное число.
За каждым натуральным числом следует только одно число, которое также является натуральным.
1 не следует ни за каким натуральным числом.
Подобные определения – это попытки абстрактного выражения интуитивного физического понятия последовательных значений дискретной величины. (Точнее, как я объяснил в предыдущей главе, в действительности это понятие является квантово-механическим). Арифметические действия, например, умножение и сложение, а также последующие понятия, подобные понятию простого числа, в этом случае определяют, ссылаясь на «натуральные числа». Но создав абстрактные «натуральные числа» через это определение и поняв их через эту интуицию, мы обнаруживаем, что осталось гораздо больше того, что мы все еще не понимаем о них. Определение простого числа раз и навсегда устанавливает, какие числа являются простыми, а какие не являются. Но понимание того, какие числа являются простыми, – например, продолжается ли последовательность простых чисел бесконечно, как они сгруппированы, насколько и почему они «случайны», – влечет за собой новое понимание и изобилие новых объяснений. В действительности оказывается, что сама теория чисел – это целый мир (этот термин используют часто). Для более полного понимания чисел мы должны определить множество новых классов абстрактных категорий и постулировать много новых структур и связей между этими структурами. Мы обнаруживаем, что некоторые подобные структуры связаны с интуицией другого рода, которой мы уже обладаем, но которая вопреки этому не имеет ничего общего с числами – например, симметрия, вра щение, континуум, множества, бесконечность и многое другое. Таким образом, абстрактные математические категории, с которыми, как нам кажется, мы знакомы, тем не менее, могут удивить или разочаровать нас. Они могут неожиданно возникнуть в новых нарядах или масках. Они могут быть необъяснимы, а впоследствии подойти под новое объяснение. Таким образом, они являются сложными и автономными, и, следовательно, по критерию доктора Джонсона, мы должны сделать вывод об их реальности. Поскольку мы не можем понять их ни как часть себя, ни как часть чего-либо еще, что мы уже понимаем, но можем понять их как независимые категории, следует сделать вывод, что они являются реальными, независимыми категориями.
Читать дальше
Конец ознакомительного отрывка
Купить книгу