Как следует играть, чтобы непременно выиграть?
Как следует играть в том случае, если взявший последнюю спичку считается проигравшим?
Решение
Ведя расчет с конца, вы без труда раскроете секрет беспроигрышной игры. Он состоит в том, чтобы, начиная игру, взять 2 спички; при следующих же ваших ходах вы оставляете в кучке 25, 20, 15, 10, наконец 5 спичек; тогда последняя спичка будет непременно ваша. Другими словами: берите каждый раз столько спичек, чтобы ваша взятка вместе с предыдущей взяткой партнера составляла 5 спичек.
Указанное правило годится и в том случае, если взявший последнюю спичку считается проигравшим, но только при первом ходе вы должны взять тогда не 2, а 1 спичку.
Немного алгебры
Игры подобного рода могут быть крайне разнообразны, в зависимости от начального числа спичек в кучке и от предельной величины взятки. Однако знакомые с начатками алгебры могут без труда найти способ выигрывать при всяких условиях игры. Сделаем же эту маленькую экскурсию в область алгебры. Читатели, которые чувствуют себя неподготовленными сопровождать нас, могут прямо перейти к следующей статейке.
Итак, пусть число спичек в куче – а, а наибольшая взятка, какая разрешается условиями игры – п. Выигрывает тот, кто берет последнюю спичку. Составим частное:
a / (n +1)
Если оно не дает остатка, то надо предоставить начинать игру своему партнеру и брать каждый раз столько, чтобы общее число спичек, взятых обоими от начала игры, последовательно равнялось
n+1 2(n+1) 3(n+1) 4(n+1) и т. д.
Если же при делении a / (n +1) получается остаток, который обозначим через r, то вы должны начать игру сами и в первый раз взять r спичек, а в дальнейшем держаться чисел:
r+(n+1) r+2(n+1) r+3(n+1) и т. д.
Ради упражнения попробуйте применить указанные правила к следующим частным случаям (выигравшим считается взявший последнюю спичку):
1) число спичек в кучке 15; взятка не свыше 3;
2) число спичек 25; взятка не свыше 4;
3) число спичек 30; взятка не свыше 6;
4) то же, но взятка – не свыше 7.
Разумеется, когда секрет беспроигрышной игры известен обоим партнерам, то выигрыш предрешен, и игра утрачивает смысл.
Игра в двадцать семь Задача 26-я
В этой игре также начинают с составления кучки (из 27 спичек) и назначают наибольший размер взятки 4 спички. Но конец игры не похож на конец предыдущих игр: здесь считается выигравшим тот, у кого по окончании игры окажется четное число спичек.
И в этом случае существует секрет беспроигрышной игры. Какой?
Решение
Начав рассчитывать с конца, вы найдете следующий способ беспроигрышной игры: если у вас уже имеется нечетное число спичек, то при дальнейших взятках вы должны оставлять противнику всякий раз такое число спичек, которое на 1 меньше кратного [23] 6 – т. е. 5 спичек, 11, 17, 23. Если же у вас взято четное число спичек, то вы берете взятки с таким расчетом, чтобы на столе оставалось число кратное 6-ти или на 1 больше, т. е. 6 или 7, 12 или 13, 18 или 19, 24 или 25.
Владея этим секретом, вы можете выиграть, даже если и не вы начали игру. Когда же начинать приходится вам, то считайте, что у вас взято 0 спичек: нуль принимайте за число четное (ведь за ним следует нечетное число – один) и поступайте согласно указанным правилам.
Интересно еще рассмотреть вопрос о беспроигрышной игре, если условие конца игры было другое: выигрывает тот, у кого нечетное число спичек. В этом случае указанные раньше правила нужно применять наоборот: при четном числе имеющихся у вас спичек оставлять противнику на 1 меньше кратного 6-ти, при нечетном числе – кратное 6-ти или на 1 больше. Начиная игру, вы оставляете противнику в этом случае 23 спички.
Игра «ним»
Эта старинная игра представляет собою усложненное видоизменение предыдущих. На стол кладут три кучки спичек; в каждой кучке может быть любое число спичек, но не больше 7-ми (одна спичка тоже называется в этой игре «кучкой»). Игра состоит в том, что играющие берут по очереди из одной кучки любое число спичек (можно и все взять), но только из одной какой-нибудь кучки, по желанию берущего. Кто возьмет последнюю спичку со стола, тот считается выигравшим.
Рассмотрим пример. Первоначальное распределение спичек по кучкам, предположим, таково:
Затем, по мере того, как играющие поочередно берут то из одной, то из другой кучки несколько спичек, последовательные изменения в числе спичек будут такие:
Читать дальше
Конец ознакомительного отрывка
Купить книгу