Объединяя бозоны и фермионы, еуперсимметрия сводит в одно семейство частицы с различными спинами. Набор частиц, одни из которых имеют спин, равный 0, другие — 1/2, 1 и т.д., можно составить так, что семейство в целом будет суперсимметричным. Следовательно, если мы требуем, чтобы теория гравитации была суперсимметричной, то гравитон со спином 2 не сможет существовать отдельно. Он должен принадлежать целому семейству частиц, связанных со спином 2 операцией суперсимметрии. К числу таких частиц относятся частицы со спином 0, 1/2, 1 и, что особенно важно, 3/2. Элементарные частицы со спином 3/2 неизвестны (хотя комбинация из трех кварков может иметь суммарный спин 3/2), поэтому предсказание такой частицы — одна из неизведанных особенностей суперсимметрии.
Описание гравитации на языке суперсимметрии получило название супергравитации. От обычной гравитации супергравитация отличается тем, что гравитон здесь уже не единственный переносчик гравитационного взаимодействия. В качестве переносчиков выступает целое суперсимметричное семейство, в том числе загадочные частицы со спином 3/2 , которые физики назвали “гравитино”.
Детальная структура этого семейства зависит от математического представления суперсимметрии, которому теоретик отдаёт предпочтение. Самое плодотворное представление называется супергравитацией N = 8. В нем рассматривается семейство частиц внушительных размеров: 70 частиц со спином О, 56 — со спином 1/2; 28 — со спином 1 и 8 — со спином 3/2 , а также единственный гравитон со спином 2. Возникает любопытный вопрос: можно ли отождествить все эти частицы с известными в природе, т.е. с кварками, лептонами и переносчиками взаимодействий? Если можно, то мы располагаем единой теорией природы, которая не только включает все частицы вещества в одно суперсемейство, но и “обобществляет” всех переносчиков взаимодействий, тем самым объединяя все взаимодействия. Таким образом, супергравитация создает основу для полного объединения, в рамках которого весь мир управляется единственной верховной суперсилой — суперсилой, предстающей перед нами различными гранями: то как электромагнитное взаимодействие, переносимое фотонами, то как сильное взаимодействие, переносимое глюонами, и т.д., но все эти грани связаны между собой суперсимметрией (см. табл. 5).
В действительности супергравитация выходит и за такие рамки. Она дает единое описание взаимодействия и вещества. В основе как взаимодействия, так и вещества лежат квантовые частицы, причем фотоны, W- и Z-частицы, а также глюоны относятся к бозонам, тогда как кварки и лептоны — относятся к фермионам. В суперсимметрии все они объединены. Подобно тому как гравитон сопровождается гравитино, переносчики других фундаментальных взаимодействий сопровождаются новыми частицами, получившими названия фотино, вино, зино и глюино!
Существование всех этих “ино” решающим образом сказывается на математической формулировке теории, в особенности на доставляющем столько беспокойства вопросе о перенормируемости. Грубо говоря, “ино”, относящиеся к фермионам, порождают в теории расходимости противоположного знака по сравнению с расходимостями, обусловленными бозонами, например гравитонами. Таким образом, имеется тенденция к взаимному уничтожению бесконечных членов — отрицательные бесконечности от гравитинных петель компенсируются положительными бес конечностями от гравитонных петель. По существу бесконечности “насмерть” суперсимметризуют друг друга.
Таблица 5
Последовательное объединение фундаментальных взаимодействий началось с синтеза электричества и магнетизма в рамках теории Максвелла в XIX в. Объединение слабого и электромагнитного взаимодействий получило надежное подтверждение в 1983 г. благодаря открытию W- и Z-частиц. Данных, подтверждающих Великое объединение, пока нет, но их с нетерпением ожидают. Число теоретических предпосылок для создания теории суперобъединения всех фундаментальных взаимодействий в рамках единой суперсилы, быстро растет.
С первых шагов супергравитации возник единственный острый вопрос: окажется ли суперсимметрия достаточно широкой, чтобы обеспечить перенормируемость супергравитации? Ответить на этот вопрос было нелегко. Супергравитация открывает широкое поле деятельности, привлекающее внимание десятков теоретиков, ежегодно по супергравитации публикуются сотни статей. Ее математический аппарат стал настолько сложным, что за исключением узкого круга посвященных найдется немного людей, которые понимают значение того или иного символа. В моем отделе работает один специалист по супергравитации, и обычно даже неполный расчет занимает у него стопку бумаги толщиной 10 см. Ведь как ни просты и ни изящны математические основы теории, проверка деталей может оказаться достаточно кропотливой.
Читать дальше