«От слепой необходимости природы, которая повсюду и всегда одна и та же, не может происходить изменения вещей. Всякое разнообразие вещей, сотворенных по месту и времени, может происходить лишь от мысли и воли Творца, необходимо существующего».
Что же получается? Стройное мироздание, сотворенное по канонам математики, остается чем-то изначально идеальным. А все разнообразие вещей, а также их изменения свершаются согласно высшей силе и высшему разуму. Стало быть, тут уж математика бессильна?
Можно понять это и так. Божественная математизация имеет отношение только к существованию идеализированных небесных тел, принятых в виде точек, витающих в абстрактном пространстве и подчиненных только закону гравитации, всемирного тяготения. А в реальном мире Земля, Луна или Солнце, планеты, кометы и звезды являют собой сложнейшие природные тела, живущие по своим законам.
При всем уважении к гравитации надо признать, что для мелких природных тел, к которым относимся и мы, она очень мала, а для микробов и вовсе ничтожна. Другое дело — электромагнитные силы или биохимические процессы.
Астрономам предоставлена прекрасная возможность вычислять лунные и солнечные затмения и траектории небесных тел, повторяя вслед за Ньютоном: «Причину же всех этих свойств силы тяготения я до сих пор не могу вывести из явлений».
Попытки со времен Галилея и Ньютона математизировать «натуральную философию» вполне понятны и оправданны. В ту пору геологические и биологические науки только создавались, а летоисчисление вели со дня творения или от Всемирного потопа; вся история Земли и жизни укладывалась в узеньком ложе немногих тысячелетий.
Накинув на планету координатную сетку и еще не догадываясь, что форма ее отличается, пусть немножко, от идеала, можно было надеяться, что построением карт и глобусов завершится решение главнейших географических задач. Выяснив некоторые удивительные геометрические закономерности строения кристаллов, тогдашние ученые имели основания подозревать, что столь же успешно будут открыты и другие геологические закономерности.
В славную эпоху Просвещения парижский академик, астроном, физик и математик Пьер Симон Лаплас высказал уверенность, что в принципе можно выразить все Мироздание в формуле (или системе формул). Клод Анри Сен-Симон даже полагал, что и область нравственности можно свести к формулам гравитации.
Но чем лучше узнавали люди окружающую реальную природу, тем больше убеждались, что математизировать естествознание не так-то просто, а то и вообще невозможно. В начале XX века В.И. Вернадский писал:
«Весьма часто приходится слышать убеждение, не соответствующее ходу научного развития, будто точное знание достигается лишь при получении математической формулы, лишь тогда, когда к объяснению явления и к его точному описанию могут быть приложены символы и построения математики... Но нет никаких оснований думать, что при дальнейшем развитии науки явления, доступные научному объяснению, подведутся под математические формулы или под так или иначе выраженные числовые правильные соотношения; нельзя думать, что в этом заключается конечная цель научной работы».
Во второй половине XX века некоторые ученые, пренебрегая его предупреждением, стали математизировать геологию. Была проделана большая работа, давшая ничтожные результаты. Методы статистики, обработки полученных при наблюдениях параметров, корреляции и т. п. как были, так и будут использоваться в геологии. Но поднять математизацией науки о Земле на более высокий уровень не удалось.
Правда, просвещенный читатель заметит: господствующая в наше время глобальная тектоника плит была создана на основе геофизических изысканий и математических моделей! Вот вам положительный пример!
Увы, это всего лишь очередной научный, миф, что мы постараемся доказать в 10-й главе.
Отношение к математике во многом зависит от того, как понимать суть научного исследования в естествознании. Распространено мнение, что самое главное — описать явление, свести его к формальной схеме, отвечая на вопрос как, а вовсе не почему. Нильс Бор выразился так: «Математика — это язык». Можно даже продолжить: универсальный язык научного описания.
Понятно стремление представителей разных областей знания перейти на одно общее наречие. Некогда в Европе единым языком науки признавали латынь. Чем это кончилось для латыни, общеизвестно.
Была попытка выработать единый всемирный диалект для живых языков. Нечто осредненное — эсперанто. Но оно не заменило ни один нормальный язык. И только для компьютеров — интеллектуальных автоматов — математические языки оказались исключительно удобны и полезны.
Читать дальше