Эйнштейн придумал выход, добавив в свои уравнения нечто, не имевшее никаких оснований в тогдашней физике, — некую новую универсальную константу:
[R] + []= (G/c 2 ) [T].
И получил гораздо более интересное решение, связавшее радиус сферической Вселенной R и ее плотность с величиной новой константы
1/R 2 = (G/c 2 ) = λ.
Эта связь оправдала и само диковинное третье предположение: чрезвычайно малая плотность Вселенной (из-за огромных расстояний между звездами и галактиками) означала огромный радиус вселенской сферы и суперчрезвычайную малость новой константы. Потому-то можно было не беспокоиться о влиянии новой константы на уже известные и подтвержденные гравитационные эффекты планетного масштаба.
И все же не странно ли, что год спустя после того, как Эйнштейн получил свои долгожданные уравнения гравитации, он решился их изменить? Он понимал это, написав другу: «В теории гравитации я сделал нечто такое, за что меня могут посадить в сумасшедший дом».
Совершенно иначе смотрел на новую константу де Ситтер — первый собеседник и соучастник Эйнштейна в решении космологической задачи. Голландский астроном высшей математической пробы, он еще в 1910 году включился в поиск новой теории гравитации. В частности, он выяснял, способны ли предложенные теории объяснить неньютоново движение Меркурия, и знал, что не способны. Поэтому успех Эйнштейна, объяснившего это астроявление в 1915 году, был для него важнейшим событием, поднявшим авторитет германского физика до небес. И когда Эйнштейн дерзнул и необъятные небеса объял физической теорией, де Ситтер присоединился первым. Он, правда, счел неубедительными упрощения Эйнштейна и придумал свое, астрономически резонное: если плотность вещества во Вселенной столь мала, то почему не предположить для упрощения, что ею можно вовсе пренебречь, то есть считать плотность вещества нулевой. Соответствующее решение, при наличии космологической постоянной, давало вполне определенную и весьма особую геометрию пространства-времени, которую надо было изучать и прикладывать к астрономическим наблюдениям.
Говорить о геометрии в отсутствии вещества было, однако, выше сил физика Эйнштейна, и он решение де Ситтера не принял всерьез. А впоследствии считал введение космологической константы своей ошибкой. И оказался неправ — сегодняшние космологи не мыслят своей науки без величины, которая у них, правда, перестала быть универсальной константой, и в ней появилась физическая начинка, но это — уже другая история и пока еще не история науки, а ее сегодняшний день.
Физики ценят великих коллег не за их ошибки. А историкам дороги и ошибки, если они помогают понять драматизм истории открытий, сделанных живыми людьми, которым тоже свойственно ошибаться.
Выясняя физику Вселенной, Эйнштейн следовал своему принципу делать все как можно проще, но не проще, чем надо. Однако незаметно нарушил его — переупростил Вселенную. Пять лет спустя это понял российский математик Александр Фридман.
Александр Фридман: «Вселенная не стоит на месте»
Весной 1922 года в главном физическом журнале того времени — «Zeitschrift fьr Physik» появилось обращение «К физикам Германии». Правление Германского физического общества сообщало о трудном положении коллег в России, которые с начала войны не получали немецких журналов. Поскольку лидировала тогда физика немецкоязычная, речь шла о жестоком информационном голоде. У немецких физиков просили публикации последних лет для пересылки в Петроград.
В том же самом журнале, двадцатью пятью страницами ниже, помещена статья, полученная из Петрограда и противоречащая призыву о помощи. Имя автора — Александра Фридмана — физикам было неизвестно, но статья с названием «О кривизне пространства» претендовала на многое. Автор утверждал, что решения Эйнштейна и де Ситтера, опубликованные за пять лет до того, не единственно возможные, а лишь весьма частные случаи, что плотность, постоянная по всему пространству, вовсе не обязана быть постоянной во времени. Именно в этой статье впервые сказано о «расширении Вселенной». Астрономическим фактом оно станет семь лет спустя; еще предстоит измерять и вычислять, сколько миллиардов лет расширение длилось и каково расстояние до космического горизонта, но горизонт науки расширил в 1922 году 34-летний Александр Фридман.
Александр Фридман
Читать дальше
Конец ознакомительного отрывка
Купить книгу