Эйнштейн потратил годы на то, чтобы оформить эту идею в виде строгого математического каркаса, и возникшие в результате полевые уравнения Эйнштейна — ядро его общей теории относительности — рассказывают нам, как в точности искривляются пространство и время в присутствии заданного количества материи (более точно — материи и энергии; в соответствии с эйнштейновской формулой E = mc 2, где E — это энергия, а m — масса, эти две величины взаимозаменяемы). {4} 4 Для математически подкованного читателя приведём уравнения Эйнштейна: где g — это метрика пространства-времени, R μν — тензор кривизны Риччи, R — скалярная кривизна, G — константа Ньютона, T μν — тензор энергии-импульса.
С той же точностью эта теория описывает, как такая кривизна пространства-времени повлияет на движение чего угодно — звезды, планеты, кометы, самого луча света, — движущегося через него; это позволяет физикам делать детальные предсказания о движении космических объектов.
Свидетельства, подтверждающие общую теорию относительности, не заставили себя ждать. Астрономам давно было известно, что движение Меркурия по орбите вокруг Солнца несколько отклоняется от предсказаний ньютоновской математики. В 1915 году Эйнштейн применил свои уравнения для того, чтобы заново рассчитать траекторию Меркурия, и смог объяснить расхождения; как он сказал позже своему коллеге Адриану Фоккеру, этот момент был настолько волнующим, что он несколько часов не мог унять сердцебиение. Затем в 1919 году астрономические наблюдения, организованные Артуром Эддингтоном и его коллегами, показали, что свет далёких звёзд, по дороге к Земле проходящий вблизи Солнца, следует по кривой в точном соответствии с предсказаниями общей теории относительности. {5} 5 За десятилетия, прошедшие с момента этого знаменитого подтверждения общей теории относительности, возникли вопросы, касающиеся надёжности полученных результатов. Чтобы увидеть световой луч от удалённой звезды, огибающий Солнце, наблюдения должны были проводиться во время солнечного затмения; к сожалению, плохая погода затруднила получение чётких фотографий затмения 1919 года. Вопрос в том, могли ли Эддингтон и его сотрудники внести систематическую ошибку под влиянием ожидаемого результата: отбраковывая фотографии, кажущиеся ненадёжными по причине интерференции, вызванной погодными условиями, они могли бы исключить несоразмерное количество фотографий с данными, которые казались противоречащими теории Эйнштейна. Недавнее подробное исследование Даниэля Кеннефика (см.: www.arxiv.org , paper arXiv:0709.0685, в котором, помимо прочих рассмотрений, делается современная переоценка фотографических пластинок, сделанных в 1919 году) убедительно свидетельствует что подтверждение теории, сделанное в 1919 году, на самом деле является надёжным.
Вместе с этим подтверждением (и заголовком на первой полосе «Нью-Йорк Таймс», гласившим: «ВЕСЬ СВЕТ В НЕБЕСАХ ИСКРИВЛЯЕТСЯ — УЧЁНЫЙ МИР ВЗБУДОРАЖЕН») к Эйнштейну пришла всемирная известность — в нём увидели нового мирового научного гения и прямого наследника Исаака Ньютона.
Однако самые впечатляющие проверки общей теории относительности были ещё впереди. В 1970-х годах эксперименты с часами на основе водородного мазера (мазеры подобны лазерам, но действуют в микроволновой части спектра) подтвердили предсказанное теорией искривление пространства-времени вблизи Земли с отклонением не более чем на 1/15 000. В 2003 году для детального изучения траектории радиоволн, проходящих вблизи Солнца, был использован космический аппарат «Кассини-Гюйгенс»; собранные данные соответствуют картине искривления пространства-времени, предсказанной общей теорией относительности, с отклонением не более 1/50 000. А сейчас, как и должно происходить с теорией, достигшей истинной зрелости, доказательства общей теории относительности многие из нас держат буквально в руках: счётчики времени спутников системы глобального позиционирования, к услугам которой вы обращаетесь с помощью своих смартфонов, регулярно делают поправку на кривизну пространства-времени на своей орбите вокруг Земли. Если бы они это не учитывали, указанные ими значения пространственного положения довольно быстро стали бы неточными. То, что в 1916 году было набором абстрактных уравнений, предложенных Эйнштейном в качестве нового описания пространства, времени и гравитации, сегодня привычно используется устройством, которое помещается у вас в кармане.
Читать дальше