Рис. 6.3.Существует бесконечно много волновых профилей в любом конечном объёме, следовательно, бесконечно много различных квантовых дрожаний. Это приводит к проблемному выводу о бесконечности энергии
И хотя совершенно очевидно, что такой вывод неприемлем, учёные не особо из-за этого переживали, потому что распознали в этой ситуации отражение хорошо известной проблемы, которую мы обсуждали ранее: противоречие между гравитацией и квантовой механикой. Всем было известно, что нельзя доверять выводам квантовой теории поля на супермалых расстояниях. Квантовые дрожания с длиной волны порядка планковской длины, 10 −33сантиметра и меньше, имеют энергию (эквивалентно, массу по формуле m = E / c 2) настолько большую, что начинает играть роль гравитационное взаимодействие. Для адекватного описания квантовых флуктуаций необходимо иметь теорию, совмещающую общую теорию относительности и квантовую механику. Идейно это приводит к теории струн или к любой другой квантовой теории, включающей гравитацию. Но немедленный и более прагматичный ответ состоял в том, чтобы просто пренебречь всеми квантовыми флуктуациями на расстояниях меньше планковской длины. Если этого не сделать, то наши вычисления, очевидно, выйдут за пределы применимости квантовой теории поля. Ожидалось, что когда-нибудь мы поймём теорию струн или квантовую гравитацию настолько хорошо, что сможем проводить вычисления с учётом квантовых флуктуаций, но пока в качестве временной меры предлагалось поместить самые быстрые флуктуации на математический карантин. Смысл этой директивы прозрачен: если проигнорировать флуктуации с длиной волны короче, чем планковская длина, их останется лишь конечное число, поэтому энергия в пустом пространстве будет тоже конечной.
Это уже прогресс. По меньшей мере такой трюк отодвигает проблему под ответственность будущих открытий, которые, постучим по столу, смогут приручить супермалые длины волн квантовых флуктуаций. Но даже при таком отсечении для энергии конечных квантовых флуктуаций всё равно получился гигантский ответ, примерно 10 94грамм на кубический сантиметр. Это намного больше, чем все звёзды во всех известных галактиках, сжатые до размера напёрстка. Рассматривая бесконечно малый кубик с ребром, равным планковской длине, приходим к выводу, что эта колоссальная плотность составляет 10 −5грамма на куб планковской длины, или 1 планковская масса на планковский объём (именно поэтому такие единицы измерений как килограммы для картофеля и секунды для ожидания являются естественным и разумным выбором). Космологическая постоянная такой величины приведёт к невообразимо быстрому взрыву, так что всё, начиная с галактик и кончая отдельными атомами, просто разорвёт в клочья. С количественной стороны астрономические наблюдения установили жёсткий предел на то, как велика может быть космологическая постоянная, если она вообще существует, а теоретические результаты превысили этот предел на умопомрачительный множитель, больше чем на сотни порядков величины. Хотя большая энергия, заполняющая пространство, лучше, чем бесконечная, физики осознали отчаянную необходимость радикально уменьшить результат своих вычислений.
Именно здесь предвзятость теоретиков выходит на первый план. Предположим на мгновение, что космологическая постоянная не просто мала. Пусть она равна нулю. Ноль — это любимое число всех теоретиков, потому что имеется верный и испытанный способ его возникновения в вычислениях — симметрия. Например, представим, что Арчи был отправлен на курсы повышения квалификации и в качестве домашнего задания должен сложить первые десять чисел, возведённых в шестьдесят третью степень, 1 63+ 2 63+ 3 63+ 4 63+ 5 63+ 6 63+ 7 63+ 8 63+ 9 63+ 10 63и затем сложить полученный результат с суммой первых десяти отрицательных чисел, возведённых в шестьдесят третью степень, (−1) 63+ (−2) 63+(−3) 63+ (−4) 63+ (−5) 63+ (−6) 63+ (−7) 63+ (−8) 63+ (−9) 63+ (−10) 63. Что получится в итоге? В тот момент, когда он кропотливо вычисляет, отчаиваясь всё сильнее и сильнее, умножая и затем складывая вместе числа, у которых более полусотни знаков, вмешивается Эдита. Она говорит: «Воспользуйся симметрией, Арчи». «Что?» — не понимает он. Эдита имеет в виду, что для каждого слагаемого в первой сумме имеется симметричный партнёр во второй сумме: 1 63и (−1) 63в сумме дают ноль (отрицательное число, возведённое в нечётную степень, остаётся отрицательным), 2 63и (−2) 63в сумме дают ноль, и так далее. Симметрия между двумя выражениями приводит к полному взаимному сокращению, как будто два ребёнка одинакового веса сидят на противоположных сторонах качелей. Без каких-либо вычислений Эдита находит, что ответ равен нулю.
Читать дальше