Можно ли доверять такому результату? За годы, прошедшие с момента первых измерений, были получены ещё более убедительные данные, подтверждающие ускоренное расширение. Более того, новые экспериментальные данные (направленные, например, на анализ детальных свойств реликтового излучения; см. книгу «Ткань космоса», глава 14) прекрасно согласуются с данными по сверхновым. Если и есть место для манёвра, то оно может быть связано только с самим объяснением ускоренного расширения. Принимая, что общая теория относительности является математическим описанием гравитационного взаимодействия, единственной возможностью действительно является антигравитация, порождённая космологической постоянной. Другие возможные объяснения можно получить, если изменить эту картину, включив в неё дополнительные экзотические квантовые поля (которые, подобно тому что мы видели в инфляционной космологии, могут в определённые периоды космической эволюции маскироваться под космологическую постоянную) {52} , либо изменить уравнения общей теории относительности (чтобы гравитационное притяжение убывало с расстоянием сильнее, чем это следует из механики Ньютона или теории Эйнштейна, позволяя таким образом удалённым областям разлетаться быстрее и не требуя присутствия космологической постоянной). Однако на сегодняшний день простейшее и наиболее убедительное объяснение наблюдаемому ускоренному расширению состоит в том, что космологическая постоянна отлична от нуля, а потому пространство заполнено тёмной энергией.
Для многих исследователей открытие ненулевой космологической постоянной стало самым удивительным наблюдательным результатом, о котором они когда-либо слышали.
Когда я впервые столкнулся с данными по сверхновым, предполагающими ненулевое значение космологической постоянной, моя реакция была типичной для многих физиков. «Этого просто не может быть!» Большинство (но не все) теоретиков давно пришли к выводу, что значение космологической постоянной равно нулю. Такая точка зрения изначально возникла из истории про «самую большую ошибку Эйнштейна», но со временем возникло множество убедительных аргументов в её поддержку. Самый сильный основан на принципе квантовой неопределённости.
В силу квантовой неопределённости и сопутствующих флуктуаций, присущих всем квантовым полям, даже в пустом пространстве происходит неистовая микроскопическая активность. Подобно атомам, сталкивающимся со стенками сосуда, или детям, прыгающим по детской площадке, квантовые флуктуации обладают определённой энергией. Однако, в отличие от атомов и детей, квантовые флуктуации повсеместны и неизбежны. Нельзя объявить, что некоторая область пространства закрыта и отправить все квантовые флуктуации домой; энергия, присущая квантовым флуктуациям, пронизывает всё пространство и не может быть удалена. Поскольку космологическая постоянная есть не что иное, как энергия, пронизывающая пространство, то квантовые флуктуации являются именно тем микроскопическим механизмом, который порождает космологическую постоянную. Осознание этого факта имеет первостепенное значение. Вспомните, когда Эйнштейн ввёл понятие космологической постоянной, он сделал это абстрактно — не уточняя, чем она может быть на самом деле, откуда она может появиться и какое иметь происхождение. Установление связи с квантовыми флуктуациями сделало неизбежным возникновение космологической постоянной: если бы Эйнштейн её не придумал, то кто-нибудь другой, знакомый с квантовой физикой, обязательно бы сделал это. Как только мы принимаем во внимание квантовую механику, мы сталкиваемся с энергией полей, однородно распределённой в пространстве, что напрямую приводит нас к понятию космологической постоянной.
Вопрос только в численном значении. Сколько энергии содержится в вездесущих квантовых дрожаниях? Когда теоретики проделали соответствующие вычисления, получившийся ответ оказался довольно нелепым: в любом объёме пространства должно присутствовать бесконечное количество энергии. Чтобы понять почему, представьте квантовые дрожания поля внутри пустой коробки произвольного размера. На рис. 6.3 показаны примерные профили квантовых флуктуаций. Каждая флуктуация даёт вклад в энергию поля (чем короче длина волны, тем быстрее скорость флуктуации, следовательно, выше энергия). Поскольку существует бесконечно много возможных волновых профилей, у каждого из которых длина волны меньше, чем у предыдущего, то полная энергия квантовых флуктуаций бесконечна. [39]
Читать дальше