Симуляторы, которые используют эмерджентные стратегии, должны устранить несоответствия, возникающие при применении различных методов, и должны гарантировать, что сплетение происходит гладким образом. Это может потребовать подкруток и поправок, которые для обитателя симуляции проявятся в виде неожиданных изменений в окружающей среде без каких-либо очевидных причин и объяснений. Сплетение может оказаться не совсем эффективным; возникающие нестыковки могут нарастать со временем, принимая угрожающие размеры, так что мир окажется непоследовательным, и симуляция разрушится.
Возможный способ обойти эти проблемы состоит в использовании другого подхода — назовём его «ультра-редукционистской стратегией» — когда симуляция выполняется согласно одному-единственному набору фундаментальных уравнений, что, как представляется физикам, имеет место в случае реальной вселенной. Роль исходных данных в таких симуляциях играет математическая теория материи и фундаментальных взаимодействий, а также выбор «начальных условий» (как всё устроено в начальный момент симуляции); затем компьютер просчитает всё вперёд во времени, избегая тем самым проблем сплетения характеристик из эмерджентной стратегии. Однако, симуляции этого типа столкнутся со своими собственными вычислительными проблемами, и даже не с непосильным симулированием «всего на свете», а уже при симуляции поведения отдельных частиц. Если уравнения, с которыми будут оперировать наши потомки, будут похожи на современные — с непрерывно изменяющимися числами — то симуляции неизбежно будут использовать приближённые методы. Чтобы точно отслеживать число при его непрерывном изменении, понадобится знать его значения с точностью до бесконечного числа знаков после запятой (например, если такая величина непрерывно изменяется, скажем, от 0,9 до 1, она будет принимать последовательно такие значения как 0,9, 0,95, 0,958, 0,9583, 0,95831, 0,958317 и так далее, вплоть до произвольного знака после запятой, для достижения абсолютной точности). Именно этого компьютер с ограниченным ресурсом не может себе позволить: ему просто не хватит времени и памяти. Поэтому, даже если использовать самые фундаментальные уравнения, всё равно возможно, что компьютерные вычисления будут приближёнными, что даст растущую со временем ошибку. [63]
Конечно же, под «ошибкой» я подразумеваю разницу между тем, что происходит в симуляции, и описанием, следующим из самых точных физических теорий, которые находятся в распоряжении симулятора. Но те, кто подобно вам находится внутри симуляции, будут считать математические правила, управляющие компьютером, законами природы. Тогда вопрос не в том, насколько точно используемые в компьютере математические законы моделируют внешний мир, ведь считается, что находясь внутри симуляции вы не видите внешнего мира. Проблема смоделированной вселенной в том, что когда компьютерные необходимые приближения начинают применяться к точным математическим уравнениям, вычисления быстро становятся нестабильными. Ошибки округления, накапливающиеся после большого количества вычислений, могут привести к противоречиям. Вы и другие смоделированные учёные окажутся свидетелями аномальных результатов в экспериментах; милые сердцу законы начнут приводить к неточным предсказаниям; измерения, которые всегда давали единственный и всеми подтверждаемый результат, начнут выдавать разные ответы. По прошествию времени, вы и ваши смоделированные коллеги начнёте думать, подобно вашим предкам из предыдущих столетий и тысячелетий, что ваша окончательная теория отнюдь не является окончательной. Все вместе вы тщательно перепроверите теорию, возможно, придумаете новые идеи, уравнения и принципы, более точно описывающие имеющиеся данные. Но, предполагая, что ошибки не приведут к таким противоречиям, которые обрушат программу, в какой-то момент вы упрётесь в стену.
После разностороннего поиска возможных объяснений, ни одно из которых не будет способно полностью объяснить произошедшее, дерзкий мыслитель может выдвинуть радикально иную идею. Если континуальные физические законы, развиваемые в течение многих тысячелетий, принять за цифровые начальные данные для мощного компьютера и использовать для создания смоделированной вселенной, то ошибки от неизбежных приближений приведут к аномалиям того же самого типа, что и наблюдаются. «Вы считаете, что мы живём в компьютерной симуляции?», — спросите вы. «Да», — ответит ваш дерзкий коллега. «Да вы с ума сошли!», — возмутитесь вы. «Да? А вы взгляните», — ответит он и развернёт к вам монитор с изображённым смоделированным миром, запрограммированным им с помощью тех же самых фундаментальных законов физики, и — затаив дыхание от первой встречи с смоделированным миром — вы увидите, как смоделированные учёные размышляют над теми же самыми странными данными, которые вызвали затруднения и у вас. {98}
Читать дальше