Если вернуться к терминологии предыдущих глав, такое множество миров следует описать как мультивселенную, составленную из множества вселенных. Она будет шестой по счёту. Я буду называть её квантовой мультивселенной .
Описывая, как квантовая механика может порождать множественные реальности, я использовал глагол «расщепляться». Его использовал Эверетт. Также поступал и ДеВитт. Однако я признаю, что в данном контексте этот глагол может сбивать с толку, и я колебался, стоит ли его использовать. Но всё-таки поддался искушению. В своё оправдание скажу, что иногда более эффективно взять кувалду, чтобы пробить дыру в барьере, стоящем между нами и необычной гипотезой об устройстве реальности, после чего заделать рванные края, чем аккуратно вырезать безупречное окошко, сквозь которое открывается новая перспектива. Я решил воспользоваться такой кувалдой, и теперь в этом и следующем разделах будет произведён необходимый ремонт. Некоторые идеи чуть более сложны, чем те, с которыми мы уже познакомились, и цепочка изложений чуть более длинна, чем раньше, но я призываю вас набраться терпения. Мне приходилось сталкиваться с тем, что зачастую у людей, которые что-то слышали о многомировом подходе или даже как-то с ним знакомы, было впечатление, что он основан на крайне экстравагантных умозрительных построениях. Но ничего подобного. Как я объясню позднее, многомировой подход является, в некотором смысле, наиболее консервативным способом осмысления квантовой физики, и важно понять, почему это так.
Важно понять, что физикам всегда приходится рассказывать истории с двух сторон. Одна сторона история — математическая — о том, как вселенная развивается согласно данной теории. Другая история — физическая, которая переводит абстрактные математические термины на экспериментальный язык. Вторая история описывает то, как математическая эволюция видится таким наблюдателям, как мы с вами, и, в более общем смысле, что математические символы теории говорят нам о природе реальности. {73} Во времена Ньютона эти две истории в общем и целом были идентичны, как я отмечал в главе 7, когда говорил о непосредственности и осязаемости ньютоновской «архитектуры». Каждый математический символ в уравнениях Ньютона имеет прямой и очевидный физический аналог. Символ x ? О, это положение мяча. Символ υ ? Скорость мяча. Однако когда мы переходим к квантовой механике, перевод математических символов в наблюдаемые явления окружающего нас мира оказывается не столь простым. Более того, используемый язык и понятия, необходимые для двух историй, становятся столь отличными, что вам требуется хорошо разобраться с каждой. Однако важно разделять, что есть что: какие идеи и описания привлекаются как часть фундаментальной математической структуры теории, а какие используются для установления связи с человеческим опытом.
Давайте послушаем эти две истории в случае многомирового подхода к квантовой механике. Вот первая из них.
Математический аппарат многомирового подхода, в отличие от копенгагенского, ясен, прозрачен и неизменен. Уравнение Шрёдингера определяет распространение во времени волн вероятности и никогда не задвигается за штору; оно всегда при деле. Уравнение Шрёдингера направляет форму волн вероятности, заставляя их с течением времени смещаться, видоизменяться и колебаться. Определяем ли мы волну вероятности частицы или совокупности частиц или рассматриваем различные ансамбли частиц, составляющие вас или ваше измерительное оборудование, уравнение Шрёдингера берёт исходную форму волны вероятности в качестве начальных данных и подобно графической программе, управляющей замысловатой экранной заставкой, выдаёт волновой профиль в любой последующий момент времени. Согласно этому подходу, именно так развивается вселенная. На этом всё. Конец истории. Точнее, конец первой истории.
Отметим, что при изложении первой истории я не использовал ни слово «расщепляться», ни понятия «множество миров», «параллельные вселенные» или «квантовая мультивселенная». Многомировой подход не нуждается в этих гипотезах. Они не играют никакой роли в фундаментальной математической структуре теории. Но, как мы сейчас увидим, эти идеи будут призваны во второй истории, когда, следуя Эверетту и его последователям, расширившим его пионерские результаты, мы изучаем, как математика объясняет нам то, что мы наблюдаем и измеряем.
Читать дальше