Бор предложил некий способ, довольно неуклюжий, задвинуть проблему: следует использовать уравнение Шрёдингера и найти волны вероятности, когда не происходит никакого наблюдения или измерения. Но при наблюдении, продолжает Бор, уравнение Шрёдингера следует отодвинуть в сторонку и объявить , что наблюдение заставило волну схлопнуться.
Однако такое предписание не только нескладное, произвольное и не имеет математического обоснования, оно даже не является понятным . Например, в нём отсутствует точное определение того, что значит «посмотреть» или «измерить». Необходимо ли участие человека? Или, как однажды спросил Эйнштейн, хватит беглого взгляда мыши? Как насчёт использования компьютера или воздействия вирусами или бактериями? Могут ли эти «измерения» заставить схлопнуться волну вероятности? Бор заявлял, что есть существенная разница между микромиром, то есть атомами и элементарными частицами, для которых применимо уравнение Шрёдингера, и макромиром, в котором находятся экспериментаторы со своим оборудованием, для которых уравнение Шрёдингера не применимо. Однако он так и не сказал, в чём именно эта разница. В действительности, он не мог бы этого сказать. С каждым годом экспериментаторы подтверждают правильность уравнения Шрёдингера без каких-либо модификаций для постоянно увеличивающихся наборов частиц, и есть все основания полагать, что оно справедливо для изрядного числа частиц, составляющих нас и всё, что угодно. Подобно наводнению, когда уровень воды медленно растёт, затапливая сначала фундамент дома, потом комнаты, грозя затопить второй этаж, математический аппарат квантовой механики постепенно выходит за пределы атомных расстояний, успешно осваивая всё большие масштабы.
Таким образом, мы подходим к следующему способу осмысления этой проблемы. Мы с вами, наши компьютеры, бактерии и вирусы и всё материальное на этом свете состоит из атомов и молекул, которые сами сложены из частиц типа электронов и кварков. Уравнение Шрёдингера выполняется для электронов и кварков, и есть все основания считать, что оно верно и для более сложноустроенных тел, независимо от общего числа составляющих их частиц. Это означает, что уравнение Шрёдингера будет продолжать быть верным и при измерении. Помимо всего прочего, измерение — это всего лишь какой-то набор частиц (человек, прибор, компьютер…), вступающий в контакт с другим набором (измеряемая частица или частицы). В этом случае, если математическая сторона уравнения Шрёдингера остаётся при этом непротиворечивой, рассуждения Бора наталкиваются на проблему. Уравнение Шрёдингера не позволяет волнам схлопнуться. Таким образом, существенный элемент копенгагенской интерпретации оказывается под сомнением.
Итак, третий вопрос таков: если проведённые выше рассуждения верны и волны вероятности не схлопываются, то как перейти от совокупности возможных результатов до проведения измерения к единственному результату после измерения? Или, если сформулировать вопрос более широко, что происходит с волной вероятности во время измерения, что позволяет проявиться привычной, определённой и единственной реальности?
Эверетт изучил этот вопрос в своей принстонской докторской диссертации и пришёл к неожиданному выводу.
Линейность и неудовлетворённость
Чтобы понять, как Эверетт пришёл к своему открытию, следует иметь чуть большее представление об уравнении Шрёдингера. Я уже подчёркивал, что уравнение не позволяет волнам вероятности внезапно схлопываться. Но почему? И что оно позволяет ? Давайте попробуем понять, как уравнение Шрёдингера управляет волной вероятности по мере её распространения во времени.
Это совсем несложно, потому что уравнение Шрёдингера относится к одному из самых простых классов математических уравнений, характеризующихся свойством линейности — математическим олицетворением того, что целое есть сумма своих частей. Чтобы понять, что это значит, представим, что график на рис. 8.7 а — это некоторая волна вероятности электрона ровно в полдень (для большей наглядности я буду использовать волну вероятности, зависящую от положения на прямой, изображённой горизонтальной линией, однако это не умаляет общности обсуждаемых идей). С помощью уравнения Шрёдингера можно следить за распространением этой волны вперёд во времени и узнать, какова будет её форма, скажем, в час дня (рис. 8.7 б . Теперь отметим следующее. Как показано на рис. 8.8 а , исходную форму волны можно разложить на два более простых кусочка; если объединить две волны на рисунке, складывая их значения точка за точкой, можно восстановить исходную форму волны. Линейность уравнения Шрёдингера означает, что его можно применять отдельно для каждого кусочка на рис. 8.8 а , определяя вид каждого фрагмента волны в час дня, и затем, объединяя результаты, согласно рис. 8.8 б , можно будет получить полный ответ, показанный на рис. 8.7 б . В разложении на два фрагмента нет ничего сакрального; исходную волну можно разложить на любое число составляющих, рассмотреть каждую отдельно, затем объединить полученные результаты для получения окончательной формы волны.
Читать дальше