Десять лет спустя знаменитый физик Брайс ДеВитт вытащил работы Эверетта из забвения. Вдохновлённый результатами своего студента Нила Грахама, развившего математические идеи Эверетта, ДеВитт стал активным сторонником переосмысления квантовой теории, предложенного Эвереттом. Помимо публикации нескольких технических статей, благодаря которым достижения Эверетта были представлены небольшой, но влиятельной группе специалистов, в 1970 году ДеВитт написал обзор для журнала «Physics Today», предназначенный для более широкой научной аудитории. В отличие от статьи 1957 года, в которой Эверетт уклонился от обсуждения других миров, ДеВитт, наоборот, сделал на этом акцент, назвав с необыкновенной искренностью «шоком» вывод Эверетта о том, что мы являемся частью огромного «мультимира». Статья получила значительный отклик в физическом сообществе, ставшем более восприимчивым к экспериментам с ортодоксальной квантовой идеологией, и привела к непрекращающимся по сей день спорам об устройстве природы, когда, как мы верим, правят бал квантовые законы.
Итак, перейдём к обсуждению.
Переворот в понимании, произошедший примерно между 1900 и 1930 годами, привёл к безжалостному удару по нашей интуиции, здравому смыслу и всем известным законам, которые новое авангардное поколение учёных стало называть «классической физикой» — термином, отражающим авторитет и уважение к картине реальности — почтенной, определённой, удовлетворительной и обладающей предсказательной силой. Скажите мне, что происходит сейчас, и я, воспользовавшись законами классической физики, предскажу, что будет в любой последующий момент времени или что было в любой предшествующий момент времени. Такие особенности, как хаос (технически говоря, когда небольшие изменения в текущем состоянии могут привести к огромным ошибкам в предсказаниях) и сложность уравнений, представляют собой проблему для практических применений почти всегда, кроме простых ситуаций, но сами по себе законы непоколебимы и мёртвой хваткой держат как прошлое, так и будущее.
Квантовая революция потребовала от нас отказаться от классической точки зрения, потому что новые результаты ясно продемонстрировали её неправильность. Классические законы прекрасно подходят для описания и предсказания движения больших объектов, таких как Земля или Луна, или повседневных объектов, например, камней или мячей. Но при переходе в микромир молекул, атомов и субатомных частиц законы классической физики перестают работать. Наперекор самой сути классических рассуждений, если вы проведёте одинаковые эксперименты с участием одинаковых частиц, одинаково подготовленных, то, как правило, вы не получите одинаковые результаты.
Представьте, например, что у вас есть 100 одинаковых коробок, и в каждой находится по одному электрону, каждый из которых создан согласно одной и той же лабораторной инструкции. Спустя ровно 10 минут вы и ваши 99 коллег измеряете положения каждого из 100 электронов. В отличие от того, что подумали бы в этом случае Ньютон, Максвелл и даже юный Эйнштейн — возможно, даже жизнью поручились бы за ожидаемый ответ, — 100 измерений не приведут к одному и тому же результату. На самом деле, на первый взгляд полученные результаты будут выглядеть случайными, ведь часть электронов окажется вблизи нижнего левого угла передней части коробки, часть — вблизи верхнего правого угла задней части коробки, какие-то из электронов будут где-то в середине коробки, и так далее.
Принципы и закономерности, благодаря которым физика является строгой и предсказательной дисциплиной, проявятся, только если вы будете снова и снова проводить этот эксперимент со 100 электронами. Проделав это, вы обнаружите следующее. В первой серии из 100 измерений 27 процентов электронов окажутся вблизи нижнего левого угла, 48 процентов вблизи верхнего правого угла и 25 процентов где-то в середине. Вторая серия измерений даст примерно такое же распределение. Аналогично с третьей серией, четвёртой и всеми последующими. Закономерность распределения не видна в отдельно взятом измерении; вы не сможете предсказать, где окажется отдельно взятый электрон. Наоборот, закономерность проявляется в статистическом распределении результатов многих измерений. Она состоит в определённой вероятности обнаружить электрон в том или ином положении.
Впечатляющее достижение основателей квантовой механики состояло в развитии математического формализма, в котором отсутствовали абсолютные предсказания, характерные для классической физики, а вместо них появились вероятности. С помощью уравнения, опубликованного Шрёдингером в 1926 году (эквивалентное, но менее удобное уравнение было получено в 1925 году Гейзенбергом), физики умеют задавать начальное состояние вещей, а затем вычислять вероятность того, что они окажутся в одном состоянии или в другом в любой последующий момент времени.
Читать дальше