Оборотной стороной медали было то, что в работах Батырева использовались знания из неизвестных большинству физиков областей математики. Мне, например, удалось уловить суть его аргументов, но понимание многих важнейших моментов давалось с огромным трудом. Одно, тем не менее, было ясно: методы, описанные в его статье, при правильном их осознании и применении вполне могут дать второе дыхание исследованиям флоп-перестроек с разрывом пространства.
К концу лета, находясь под впечатлением результатов этих работ, я решил вернуться к задаче о флоп-перестройках и сконцентрировать на ней все свое внимание. От Моррисона я узнал, что он собирается провести год в Институте перспективных исследований, а Аспинуолл, по моим сведениям, тоже будет там на стажировке. После нескольких телефонных звонков и переписки по электронной почте я договорился, что тоже проведу осень 1992 г. в этом институте.
Рождение стратегии
Трудно вообразить себе лучшее место для многочасовой и напряженной исследовательской работы, чем Институт перспективных исследований. Этот институт, основанный в 1930 г., расположен среди слегка холмистых полей, примыкающих к идиллическому лесу, и находится в нескольких милях от территории Принстонского университета. Говорят, здесь ничто не может отвлечь вас от работы в Институте, потому что отвлекать просто нечему.
После отъезда из Германии в 1933 г. Эйнштейн обосновался в этом институте и прожил здесь до конца своей жизни. Не нужно напрягать воображение, чтобы представить его размышляющим о единой теории поля в безлюдной тишине и почти аскетической атмосфере окрестностей Института. В воздухе здесь витает дух наследия прошлых глубоких идей, и ощущение этого может быть или возбуждающим, или угнетающим, в зависимости от того, на какой промежуточной стадии находятся ваши исследования.
Как-то раз, вскоре после моего прибытия в Институт, мы с Аспинуоллом прогуливались по улице Нассау (главной торговой улице в Принстоне), рассуждая о том, где будем сегодня обедать. Вопрос не праздный, потому что Поль — большой любитель мясного, а я вегетарианец. В самый разгар обмена мнениями о стилях жизни он спросил, есть ли у меня идеи о том, какими новыми задачами стоило бы заняться. Я ответил, что есть, и подробно изложил свои соображения по поводу важности вопроса о том, возможны ли во Вселенной флоп-перестройки с разрывом пространства, если Вселенная действительно описывается теорией струн. Я также обрисовал ему стратегию своих действий и рассказал о недавно возникшей надежде на то, что работа Батырева может помочь восполнить недостающие пробелы в понимании. Я полагал, что проповедую новообращенному, и Поль будет возбужден перспективой этого исследования. Но я ошибся. Сейчас, задним числом, я понимаю, что его сдержанность объяснялась добродушной и давно возникшей тягой к интеллектуальному соперничеству, в котором каждый из нас играет роль «адвоката дьявола» по отношению к идеям другого. Не прошло и нескольких дней, как он примкнул ко мне, и мы оба с головой погрузились в изучение флоп-перестроек.
К тому времени приехал и Моррисон. Втроем мы собрались в институтском кафе, чтобы выработать план действий. Мы были единодушны в том, что главная задача состоит в ответе на вопрос, могут ли переходы от рис. 11.3 а к рис. 11.4 г иметь место в нашей Вселенной. Однако решение этой задачи в лоб сулило непреодолимые препятствия, так как описывающие этот переход уравнения, особенно те из них, которые описывают разрыв пространства, крайне сложны. Вместо этого, мы решили переформулировать задачу в терминах зеркальных пространств, надеясь на то, что уравнения в этом случае будут более простыми. Идея схематически показана на рис. 11.5, где в верхнем ряду показана эволюция от рис. 11.3 а к рис. 11.4 г, а в нижнем — та же эволюция с точки зрения зеркальных многообразий Калаби-Яу.
Рис. 11.5. Флоп-перестройка с разрывом пространства (верхний ряд) и соответствующая зеркальная формулировка (нижний ряд).
Уже тогда нам было ясно, что в зеркальной формулировке физика струн обладает хорошими свойствами и свободна от всякого рода катастроф. На рис. 11.5 видно, что в нижнем ряду не наблюдается разрывов или проколов пространства. Однако самый сложный вопрос, к которому привело нас это наблюдение, заключался в том, не переходим ли мы через границы применимости зеркальной симметрии. И, несмотря на то, что верхние и нижние многообразия Калаби-Яу, изображенные в левой колонке на рис. 11.5, приводят к эквивалентным физическим результатам, верно ли, что на каждом шаге вправо, изображенном на рис. 11.5 (в процессе чего в середине обязательно встретятся фазы прокола-разрыва-восстановления) физические свойства исходной и зеркальной точки зрения идентичны?
Читать дальше
Конец ознакомительного отрывка
Купить книгу