Так почему же, если теория струн действительно описывает нашу Вселенную, мы до сих пор не сталкивались с различными понятиями расстояния в повседневной жизни или научных исследованиях? Всякий раз, говоря о расстояниях, мы опираемся на опыт, в котором есть место лишь для одного понятия расстояния и ни намека на другое понятие. Где мы упустили альтернативную возможность? Ответ в том, что при всей симметрии нашего подхода, для значений R (а, следовательно, и значений 1/R), сильно отличающихся от единицы (что опять означает единицу, умноженную на планковскую длину), одно из конструктивных определений крайне сложно реализовать экспериментально, в то время как второе реализуется весьма просто. По существу, мы всегда выбираем самый простой подход, не подозревая, что существует другая возможность.
Значительное различие в сложности реализации двух подходов обусловлено значительным различием масс используемых зондов, т. е. различием между высокоэнергетической топологической и низкоэнергетической колебательной модой (и наоборот), если радиус R (и 1/R) сильно отличается от планковской длины (когда R = 1). При таких радиусах «высоким» энергиям соответствуют чрезвычайно большие массы зондов (в миллиарды миллиардов раз больше массы протона), а «низким» энергиям соответствуют исчезающе малые массы. Различие двух подходов при этом непреодолимо велико, так как даже создать столь тяжелые струнные конфигурации в настоящее время технически невозможно. На практике можно реализовать лишь один из двух подходов, а именно тот, в котором используется более легкая струнная конфигурация. До сего момента именно на него неявно опирались все предыдущие рассуждения, связанные с понятием расстояния; именно он питает нашу интуицию, и, следовательно, хорошо с ней согласуется.
Игнорируя практическую сторону вопроса, можно сказать, что в описываемой теорией струн Вселенной каждый вправе выбирать любой из двух подходов. Когда астрономы измеряют «размер Вселенной», они регистрируют фотоны, которые, путешествуя по Вселенной, волей случая попадают в их телескопы. Эти фотоны являются легкими струнными модами, и результат равен 1061 планковских длин. Если три известных нам пространственные измерения действительно циклические, а теория струн верна, то астрономы, использующие совершенно другое (в данный момент не существующее) оборудование, в принципе могли бы обмерять небеса тяжелыми модами намотанных струн. Они получили бы ответ, обратный этому огромному расстоянию. Именно в таком смысле можно считать, что Вселенная либо громадна (как мы обычно и считаем), либо крайне мала. Согласно информации, которую дают легкие моды струны, Вселенная громадна и расширяется, а согласно информации тяжелых мод — крайне мала и сжимается. В этом нет противоречия: просто используются два различных, но одинаково осмысленных определения расстояния. Из-за технических ограничений для нас гораздо привычнее первое определение, но и второе определение столь же законно.
Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся легкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе легких и на основе тяжелых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.
Минимальный размер
Предыдущее обсуждение было лишь разминкой; теперь мы перейдем к главному. Если все время измерять расстояния «простым способом», т. е. использовать самые легкие моды струны вместо самых тяжелых, полученные результаты всегда будут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трех пространственных измерений в предположении, что они являются циклическими. Для определенности примем, что в начале мысленного эксперимента легкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. R станет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.
Читать дальше
Конец ознакомительного отрывка
Купить книгу