Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения

Здесь есть возможность читать онлайн «Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мечта Эйнштейна. В поисках единой теории строения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мечта Эйнштейна. В поисках единой теории строения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Barry Parker.
.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.

Мечта Эйнштейна. В поисках единой теории строения — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мечта Эйнштейна. В поисках единой теории строения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Готовя работу к публикации, Гамов, который не мог упустить случая пошутить, заметил, что фамилии авторов – его и Альфера – напоминают названия первой и третьей букв греческого алфавита: «альфа» и «гамма». Не хватало только «беты», и Гамов вспомнил о своём приятеле из Корнуэлла по фамилии Бете. Гамов включил его в список авторов, и впоследствии теорию так и стали называть: «альфа – бета – гамма». Бете, вроде бы, ничего не имел против и даже помогал обсуждать теорию, но когда впоследствии выяснилось, что она всё-таки неверна, Гамов уверял, что до него дошли слухи, будто Бете собрался сменить фамилию. Кстати, о перемене имён. Как позже вспоминал Гамов, он просил своего сотрудника Германа, также работавшего над этой теорией, сменить фамилию на «Дельтер», чтобы ряд был полным («дельта» – четвёртая буква греческого алфавита), но тот «…с тупым упрямством отказывался», как сокрушался Гамов.

Вскоре после обнародования теории «альфа-бета-гамма» на неё обратил внимание Энрико Ферми. Ферми не понравилось, что у Альфера получилась такая аккуратная кривая. На основе других доступных ему данных (которые не давали столь гладкой кривой, особенно там, где дело касалось лёгких элементов) он поручил своему студенту (А. Туркевичу) тщательно проверить график. Туркевич обнаружил, что теория Гамова годится только для элементов до гелия, потом шёл разрыв (такой же разрыв существовал для немного более тяжёлых элементов). Почти одновременно это заметили Альфер и Гамов. Оказывается, более тяжёлые элементы не могли образоваться ни в ранней Вселенной, ни в звёздах. Бете раньше уже указал на эту трудность, занимаясь другими задачами, связанными со звёздами.

Теперь, однако, о реакциях на звёздах было известно гораздо больше, и по предложению Ферми Мартин Шварцшильд начал изучать спектры звёзд, чтобы определить, есть ли там следы образования тяжёлых элементов. Некоторые доказательства он нашёл. Задача заключалась в объяснении таинственного преодоления разрыва. В 1951 году он поручил эту задачу своему студенту Эдвину Салпитеру, и тот вскоре показал, что есть способ её решения: серия реакций с участием бериллия (который должен быть на звёздах) позволяет получить из гелия углерод.

Один из важных прогнозов, который позволяла сделать теория Гамова, касался температуры Вселенной. После Большого взрыва излучение распространилось по Вселенной и «остыло», но по Гамову его температура должна была равняться примерно 25 K. Позднее Альфер и Герман повторили расчёты и определили, что температура должна составить всего около 5 K. Считая, что на том уровне техники, который существовал в 1948 году, зарегистрировать столь слабое излучение невозможно, они даже не пытались этого сделать и не советовали другим, так как были уверены, что его нельзя будет заметить на фоне излучения звёзд.

В начале пятидесятых, когда учёные обнаружили, что на звёздах могут образовываться элементы, теория Гамова быстро отошла на второй план, но лет через десять снова привлекла к себе внимание. Исследуя содержание гелия во Вселенной, Фред Хойл сделал интересное открытие: в звёздах мог возникнуть не весь гелий, имеющийся во Вселенной; большая его часть – до 90% – должна была образоваться в другом месте. Первым кандидатом на эту роль стала ранняя Вселенная; вскоре было доказано, что именно там и появился гелий.

К середине 60-х годов большинство астрономов приняло концепцию происхождения Вселенной в результате Большого взрыва, предполагавшую, что в начале своего существования Вселенная имела бесконечно малые размеры. Многим трудно согласиться с мыслью о том, что вся масса Вселенной когда-то содержалась в ядре, меньшем чем атом. Однако есть нечто ещё труднее воспринимаемое в этой идее первичного ядра. Нам кажется, что оно существовало в некотором бесконечном пространстве, где и взорвалось, однако астрономы утверждают, что это не так. Вокруг этого ядра не было пространства: ядро и было Вселенной. Взорвавшись, оно создало пространство, время и материю. Позднее мы внимательнее рассмотрим этот взрыв и увидим, как из него развилась Вселенная, но прежде вернёмся назад во времени к этому взрыву.

Назад к Большому взрыву

Чтобы вернуться к самому началу, нужно знать возраст Вселенной. К сожалению, пока он точно не известен, поэтому возьмём общепринятый – 18 миллиардов лет. Это означает, что 18 миллиардов лет назад произошёл колоссальный взрыв, в результате которого родилась наша Вселенная.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мечта Эйнштейна. В поисках единой теории строения»

Представляем Вашему вниманию похожие книги на «Мечта Эйнштейна. В поисках единой теории строения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Образцов - Единая теория всего
Константин Образцов
Отзывы о книге «Мечта Эйнштейна. В поисках единой теории строения»

Обсуждение, отзывы о книге «Мечта Эйнштейна. В поисках единой теории строения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x