Помимо выброса в пространство уже накопленных тяжёлых элементов сверхновая выполняет и другую важную функцию. Мы уже видели, что в процессе горения звезды образуются элементы вплоть до железа. А откуда берутся более тяжёлые элементы, такие как серебро, золото и уран? По современным теориям они образуются непосредственно в процессе взрыва сверхновой.
Но мы не дали ответа на ещё один важный вопрос: а что остаётся после разлёта внешних слоев? В 1933 году сотрудник обсерватории Маунт-Вилсон Фриц Цвики предположил, что в результате взрыва образуется маленькая состоящая из нейтронов звёздочка, называемая нейтронной звездой. Через несколько лет вместе с другим сотрудником той же обсерватории Вальтером Баале Цвики приступил к детальному изучению сверхновых. Поскольку в нашей Галактике их очень мало (один взрыв происходит в среднем раз в 50 лет), учёные решили поискать их в других галактиках. В результате трёхлетних наблюдений над примерно 3000 галактик им удалось обнаружить 12 сверхновых.
Предположение Цвики о существовании нейтронных звёзд было, конечно, очень смелым, и, к сожалению, мало кто обратил на него внимание. Некоторые вопросы, связанные с поведением таких звёзд, рассмотрел советский физик Лев Ландау. В 1939 году этой проблемой заинтересовался сотрудник Калифорнийского университета Роберт Оппенгеймер. Он решил с помощью общей теории относительности проверить, могут ли существовать такие объекты, и поручил заняться этой проблемой своему студенту Джорджу Волкову. Вскоре Волков обнаружил, что если масса звезды достаточно велика, то в результате коллапса возникнет нейтронная звезда. Но самым странным было то, что, подобно обнаруженному Чандрасекаром пределу массы для белых карликов, аналогичный предел должен существовать и для нейтронной звезды.
В результате образования нейтронов из электронов и протонов рождается объект с гораздо большей плотностью, поскольку нейтроны занимают меньше места, чем электроны. Кроме того, Оппенгеймер и Волков показали, что, как и в случае белого карлика, тут наблюдается давление вырождения, только это нейтронное давление вырождения, и потому оно может удерживать бо?льшие массы, примерно до 3,2 массы Солнца. Но тогда возникает ещё один вопрос – что же происходит со звёздами, у которых масса больше 3,2 солнечной?
Нельзя сказать, чтобы новые результаты произвели на астрономов большое впечатление, ведь тогда ещё не было зарегистрировано ни одной нейтронной звезды, и само их существование было сомнительно. Прошло много лет, прежде чем их обнаружили.
В начале 60-х годов Энтони Хьюиш из Кембриджа разработал методику выделения узких участков спектра излучения удалённых источников, таких как галактики. За несколько лет до этого были обнаружены объекты, похожие на звёзды, которые назвали квазарами, – они-то и были источниками такого излучения, и Хьюиш считал, что его метод можно будет применить для определения их местоположения. Для этой цели требовался особый вид радиотелескопа, чувствительный к резким изменениям частоты (в те времена большинство телескопов было другого типа). Он решил построить такой телескоп и с помощью нескольких студентов соорудил его на площади два гектара из мачт и проводов.
Вместе со студентами работала аспирантка Джослин Белл. В июле 1967 года сооружение телескопа было закончено, и ей поручили расшифровывать те километры записей, которые он выдавал. Одной из её обязанностей было выделение всех помех искусственного происхождения. Через несколько недель она заметила нечто, весьма напоминающее промышленные помехи, хотя и не совсем обычные. Сигнал повторялся каждую ночь примерно в одно и то же время. Белл это заинтересовало, и она поделилась своими наблюдениями с Хьюишем. Тот посоветовал сделать скоростную запись, чтобы подробно рассмотреть структуру сигнала, но когда Белл подготовила аппаратуру, сигнал исчез. Она неделями ждала его возобновления, но потом махнула рукой. Однако стоило ей отправиться на лекцию в Кембридж, как сигнал появился снова. На следующий день ей удалось сделать скоростную запись, которая, к её удивлению, показала, что сигнал состоит из ряда равномерно распределённых пиков с интервалом в 1,3 с. Она сообщила об этом Хьюишу, и он ответил: «Ну что ж, всё ясно, это помехи искусственного происхождения». В отличие от Белл, Хьюиш понимал, что астрономический объект – за исключением, разве что белого карлика или нейтронной звезды, чьё существование ещё не было установлено, – испускать сигнал такой частоты не может.
Читать дальше