Таким образом, решение парадокса белых карликов Эддингтона имеет две стороны. Во-первых, Сириус В не сдерживает влияние гравитации с помощью температурного давления, как думали ранее, до появления квантовой механики: основную роль играет давление вырождения. Во-вторых, когда Сириус В остывает, ему нет надобности расширяться до плотности камня, чтобы поддерживать себя; как раз наоборот, он будет вполне удовлетворительно поддерживаться давлением вырождения при существующей плотности 4 млн г/см 3.
Читая все это и изучая математические выкладки в Мадрасской библиотеке, Чандрасекар был попросту очарован. Это было его первое соприкосновение с современной астрономией, и он обнаружил глубокие следствия двух, идущих рука об руку, революционных идей физики XX века: общая теория относительности Эйнштейна с новым взглядом на природу пространства и времени проявилась в красноволновом сдвиге света, испускаемого Сириусом В, а новая квантовая механика с корпускулярно-волновым дуализмом была ответственна за внутреннее давление Сириуса В. Такая астрономия представлялась благодатным полем, на котором молодой человек мог бы проявить себя.
Продолжая обучение в Мадрасе, Чандрасекар обнаружил дальнейшие приложения квантовой механики к астрономической Вселенной. Он даже написал небольшую статью о своих идеях, отправил ее в Англию Фоулеру, с которым ранее никогда не встречался, и Фоулер представил ее к публикации.
Наконец, в 1930 г. в возрасте 19 лет Чандрасекар получил индийский эквивалент степени бакалавра и в последнюю неделю июля ступил на борт парохода, отплывающего в далекую Англию. Он был принят для продолжения образования в Кембриджский университет — место, где работали его кумиры Фоулер и Эддингтон.
Предельная масса
Восемнадцать дней плавания по морю из Мадраса в Саутгемптон были для Чандрасекара первой за много месяцев возможностью спокойно подумать о физике, не отвлекаясь на рутину учебы и экзаменов. Морское уединение способствовало размышлениям, которые были весьма плодотворны. Настолько, что фактически помогли получить ему Нобелевскую премию, правда, лишь 54 года спустя и только после серьезной борьбы за признание мировым астрономическим сообществом.
На борту парохода Чандрасекар позволил своим мыслям вернуться к белым карликам, парадоксу Эддингтона и разрешению парадокса Фоулером. Решение Фоулера почти наверняка было правильным, и другого не было. Однако Фоулер до конца не разработал детали баланса между вырожденным давлением и гравитацией в звездах типа белого карлика, не рассчитал также и их внутреннюю структуру: каким образом от поверхности к центру меняются плотность, давление и гравитация звезды. И это был вызов — дразнящая проблема, помогающая к тому же бороться со скукой во время долгого путешествия.
Чтобы найти опору при исследовании структуры звезды, Чандрасекару необходимо было получить ответ на следующий вопрос.
Допустим, вещество, из которого состоит белый карлик, уже сжато до некоторой плотности (например, до 1 млн г/см 3). Сожмем вещество (т. е. уменьшим его объем и увеличим плотность) еще на 1 %. Вещество будет противиться этому дополнительному сжатию, увеличивая свое внутреннее давление. На сколько процентов возрастет это давление? Физики используют термин «адиабатический коэффициент» для такого процентного изменения давления, обусловленного одним процентом дополнительного сжатия. В этой книге я буду пользоваться более наглядным названием — сопротивление сжатию, или просто сопротивление. (Его не следует путать с «электрическим сопротивлением», это совершенно разные понятия.)
Чандрасекар вывел сопротивление сжатию, изучая шаг за шагом последствия однопроцентного увеличения плотности вещества белого карлика: результирующее уменьшение размера электронной ячейки, уменьшение длины волны электрона, увеличение его энергии и скорости и, наконец, возрастание давления. Результат оказался прост: однопроцентное увеличение плотности приводит к увеличению давления на 5/3 % (1,667 %). Сопротивление вещества белого карлика, следовательно, было равно 5/3.
За много десятилетий до плавания Чандрасекара астрофизики рассчитали составляющие баланса между гравитацией и давлением внутри любой звезды, сопротивление сжатию которой не зависит от глубины. То есть звезды, давление и плотность которой возрастают так, что если продвигаться все глубже внутрь, увеличение плотности на 1 % будет по-прежнему сопровождаться тем же фиксированным приращением давления. Детали получающейся структуры звезды содержались в книге Эддингтона «Внутреннее строение звезд» — этой книгой Чандрасекар весьма дорожил и потому взял ее с собой на борт корабля. Поэтому когда Чандрасекар обнаружил, что вещество белого карлика имеет не зависящее от давления сопротивление сжатию, он был очень доволен. Теперь, обратившись к книге Эддингтона, он мог сразу узнать внутреннюю структуру звезды: как плотность и давление меняются от поверхности к центру.
Читать дальше