Далее Эддингтон описал новый ключевой подход, подкрепляющий «абсурдное» положение, согласно которому Сириус В в 61 тыс. раз плотнее воды: если Сириус В действительно столь плотный, то, в соответствии с законами гравитации Эйнштейна, свет, проходя сквозь его мощное гравитационное поле, «покраснел» бы на 6/100 000 — сдвиг, в 30 раз более сильный, чем для света, излучаемого Солнцем, и потому легко обнаружимый. Кажется это предсказание красного смещения было проверено как раз перед тем, как книга Эддингтона была направлена в печать в 1925 г., астрономом В.С. Адамсом в обсерватории Маунт Вильсон, расположенной на вершине горы близ Пасадены в Калифорнии [61] В деликатных экспериментах можно с опасной легкостью получить тот результат, который, как кажется, и должен получиться. Измеренное Адамсом значение красноволнового гравитационного сдвига является примером именно такого случая. Его результат оказался согласующимся с предсказанием теории, хотя предсказанное значение сдвига было серьезно ошибочным (в пять раз меньше) из-за ошибок в астрономических оценках массы и диаметра Сириуса В.
.
4.1. Сравнение размеров и средних плотностей Солнца, Земли и белого карлика Сириус В на основе современных данных
«Профессор Адамс убил сразу двух зайцев, — писал Эддингтон, — он выполнил еще одну проверку общей теории относительности Эйнштейна и подтвердил наши подозрения относительно того, что вещество с плотностью, в 2000 раз большей, чем у платины, не только возможно, но и реально существует во Вселенной». Еще дальше в книге Эддингтона Чандрасекар нашел описание того, как внутренняя структура звезд, таких как Солнце или Сириус В, поддерживается посредством баланса между внутренним давлением и гравитационным сжатием. Природа подобного баланса может быть понята (у Эддингтона этого нет) из аналогии со сжимаемым в руках мячиком (левая часть рис. 4.2). Внешняя сила сжатия ваших рук в точности компенсируется направленной наружу силой давления воздуха в мячике — давления, которое создается молекулами воздуха, бомбардирующими резиновую стенку мяча.
4.2. Баланс между силой давления ваших рук и давлением внутри мяча (слева) и аналогичный баланс между гравитационным сжатием (весом) внешней оболочки звездного вещества и давлением внутреннего объема звезды ( справа ).
Для звезды (правая часть рис. 4.2) аналогом ваших рук является вес внешней оболочки звездного вещества, а аналогом воздуха в мяче — вещество внутри оболочки. Граница между внешней оболочкой и внутренним шаром может быть выбрана совершенно произвольно — на глубине одного метра, километра, тысячи километров от поверхности звезды… Где бы ни была выбрана граница, должно выполняться требование: вес внешней оболочки, сжимающий внутреннее ядро (гравитационное сжатие внешней оболочки), в точности скомпенсирован давлением молекул внутреннего шара, сталкивающимися с этой оболочкой. Этот баланс, с необходимостью возникающий в каждом месте внутри звезды, определяет структуру звезды, т. е. детали того, как давление, гравитация и плотность меняются от поверхности звезды вглубь, к ее центру.
В книге Эддингтона также обсуждался не дающий покоя физикам парадокс, связанный с представлениями того времени о структуре белых карликов. Эддингтон полагал (так же как и все астрономы в 1925 г.), что давление вещества белых карликов, так же как и в вашем мяче, должно быть обусловлено его теплом. Тепло заставляет атомы вещества двигаться внутри звезды с высокими скоростями, сталкиваясь друг с другом и бомбардируя поверхность границы между внешней оболочкой звезды и его внутренним ядром. При «макроскопическом» рассмотрении, слишком грубом, чтобы различать отдельные атомы, все, что мы можем измерить, это полную силу ударов атомов, которые сталкиваются, скажем, с одним квадратным сантиметром поверхности. Эта полная сила и есть давление внутри звезды.
Когда звезда охлаждается, испуская излучение во внешнее пространство, ее атомы начинают двигаться медленнее, давление ослабевает, и вес внешней оболочки сжимает внутреннее ядро до меньшего объема. Это сжатие вновь нагревает звезду, увеличивая внутреннее давление, пока не будет достигнут новый баланс сжатие-давление, но уже при меньших размерах, чем прежде. Таким образом, поскольку Сириус В продолжает постепенно охлаждаться, излучая тепло в межзвездное пространство, он должен мало-помалу сокращаться в размерах.
Читать дальше