Хотя в 1980-х я воздерживался от публичных высказываний, отражающих мой пессимистичный взгляд, сам я рассматривал ситуацию как трагичную, поскольку Вебером, Брагинским и многими моими другими друзьями было вложено в твердотельные детекторы так много усилий, а также потому, что я был убежден, что гравитационное излучение потенциально может перевернуть наши представления о Вселенной.
LIGO
Чтобы понять, к какому перевороту может привести детектирование и дешифровка гравитационных волн, вспомним детали предыдущих переворотов: тех, которые были вызваны развитием рентгеновских и радиотелескопов (главы 8 и 9).
В 1930-х, до появления радиоастрономии и рентгеновской астрономии, наши знания о Вселенной появлялись почти исключительно благодаря свету. Свет показывал нам тихую и статичную Вселенную, в которой доминировали звезды и планеты, мирно передвигающиеся по своим орбитам и светящие ровным светом, Вселенную, в которой на изменения требуются миллионы и миллиарды лет.
Это представление о спокойной Вселенной вдребезги разбилось в 1950-х, 1960-х и 1970-х, когда радиоволны и рентгеновские лучи показали нам бурную сторону нашей Вселенной: струи, извергаемые из галактических ядер, квазары с меняющейся яркостью, более яркие, чем наша галактика, пульсары с мощными лучами, бьющими из поверхности и вращающимися с высокой скоростью. Самые яркие объекты, наблюдаемые в оптические телескопы, — это Солнце, планеты и несколько ближайших статичных звезд. Самыми яркими объектами, видимыми с помощью радиотелескопов, являются мощные взрывы в ядрах удаленных галактик, обеспечиваемые энергией (вероятно) гигантских черных дыр. Самыми яркими объектами для рентгеновских телескопов являются малые черные дыры и нейтронные звезды, отбирающие горячий газ у своих компаньонов в двойной системе.
Что такого особенного в радиоволнах и рентгеновских лучах, что позволило им совершить такой впечатляющий переворот? Ключевым является то, что они обеспечили нас совершенно другим видом информации, чем та, которую приносит свет: свет с длиной волны в полмикрона излучается в первую очередь атомами, находящимися в атмосферах звезд и планет, и поэтому рассказывает нам об этих атмосферах. Радиоволны, имеющие в 10 миллионов раз большую длину волны, излучаются в основном электронами, обращающимися по спиралям с околосветовыми скоростями в магнитных полях, и поэтому сообщают нам о замагниченных струях, извергаемых из ядер галактик, о гигантских магнитных межгалактических лепестках, созданных струями и о магнитных лучах пульсаров. Рентгеновские лучи, имеющие длины волн в тысячи раз более короткие, чем свет, излучаются в основном электронами сверхгорячего газа, падающего на черные дыры и нейтронные звезды, и поэтому говорят нам непосредственно об аккрецирующем газе и косвенно о черных дырах и нейтронных звездах.
Разница между светом, с одной стороны, и радиоволнами и рентгеновскими лучами меркнет по сравнению с отличиями между электромагнитными волнами (видимым, инфракрасным, ультрафиолетовым светом, радиоволнами, рентгеновскими и гамма-лучами) современной астрономии и гравитационными волнами. Соответственно, гравитационные волны должны привести к революции в нашем понимании Вселенной даже большей, чем совершили радиоволны и рентгеновские лучи. Среди отличий между электромагнитными и гравитационными волнами и их следствиями можно отметить следующие [103] Эти отличия, их следствия и ожидаемые особенности гравитационных волн, приходящих от разных астрофизических источников, были выяснены в результате работы множества теоретиков, в их числе Тибо Дамур из Парижа, Леонид Грищук из Москвы, Такаши Намура из Киото, Бернард Шуц из Уэльса, Стюарт Шапиро из Итаки, штат Нью-Йорк, Клиффорд Уилл из Сент-Луиса и я сам.
:
• Гравитационные волны должны сильнее всего излучаться крупномасштабными когерентными колебаниями кривизны пространства-времени (например, в результате столкновения и слияния двух черных дыр) и крупномасштабными перемещениями гигантских объемов материи (например, при схлопывании ядра звезды, вызывающим образование сверхновой, или при сближении по спирали двух обращающихся вокруг друг друга нейтронных звезд). Поэтому гравитационные волны должны показать нам движения гигантских масс и гигантские кривизны. В отличие от этого, космические электромагнитные волны обычно излучаются по отдельности, огромным числом отдельных и независимых атомов или электронов, и эти отдельные электромагнитные волны, каждая из которых колеблется немного иначе, затем накладываются друг на друга, образуя суммарную волну, которую и наблюдают астрономы. В результате, в первую очередь мы узнаем от электромагнитных волн о температуре, плотности и магнитных полях, под действием которых находятся излучающие атомы и электроны.
Читать дальше