Доказательства математических наук, не требующие привлечения прямых данных опыта в самом ходе доказательства и опирающиеся на опыт лишь через посредство тех обобщений опыта, которые содержатся в основных понятиях, определениях и аксиомах этих наук, называются математическими доказательствами.
Доказательства наук, необходимо требующие привлечения прямых данных опыта в самом ходе доказательства и, таким образом, не ограничивающиеся теми обобщениями опыта, которые содержатся в их основных понятиях, называются эмпирическими доказательствами.
Из этих определений и объяснений ясно, что различие между двумя рассматриваемыми видами доказательства состоит вовсе не в том, что доказательства математических наук стоят якобы вне опыта, а доказательства эмпирических наук основываются на опыте. Все доказательства всех наук — математических так же, как и эмпирических,— предполагают опыт в качестве необходимой и последней основы и в качестве критерия истинности всех своих положений.
Различие между этими двумя видами доказательства обусловлено только тем, что в одном случае самим ходом доказательства требуется прямое обращение к данным опыта, в другом же для осуществления доказательства достаточно той связи с опытом, которая дана уже в содержании понятий, входящих в состав доказательства. Из сказанного видно, что различие между математическими и эмпирическими доказательствами — не безусловно. Об этом свидетельствует также и следующее. Ряд наук о природе, доказывающих свои истины при помощи прямого обращения копыту, содержит в себе и такие части, в которых доказательства ведутся по методу математических наук. С другой стороны, и в математических науках математической форме доказательства часто предшествует обоснование, предполагающее прямое обращение к опыту, так что математическая форма доказательства вырабатывается впоследствии уже после того, как истинность доказываемого тезиса стала известной из опыта. Примером такого перехода от найденного в опыте результата к его математическому и дедуктивному по форме обоснованию может быть история определения Архимедом площади параболы.
VI. Ошибки в доказательствах
Как и всякое логическое действие, доказательство может быть правильным или ошибочным.
Первым необходимым условием правильности доказательства является истинность доказываемого тезиса по существу его содержания. В логическом строении доказательства тезис играет роль следствия, а аргументы и демонстрация — роль основания. Так как ложность следствия всегда означает ложность основания, то при условии, если доказываемый тезис ложен, всякое доказательство этого тезиса — каким бы ни был способ самого доказательства — всегда может быть только ложным. При этом ложность доказательства может быть троякая.
Во-первых, ошибка может состоять в том, что доказываемый тезис ошибочно отождествляется с другим — истинным — тезисом. В этом случае доказательство истинного тезиса может быть вполне правильным, а ошибка состоит в том, что правильное доказательство этого другого — истинного — тезиса принимается за доказательство того ложного тезиса, который хотели доказать и с которым ошибочно отождествили доказанный истинный тезис. Ошибка этого рода называется «подменой доказываемого тезиса» (её латинское название — ignoratio elenchi).
Во-вторых, ошибка может состоять в том, что доказываемый тезис выводится из ложных или из недоказанных и потому сомнительных аргументов. В этом случае демонстрация может быть логически последовательной, тезис может логически следовать из принятых аргументов, но в то же время может оказаться ложным по существу своего содержания. Ошибка этого рода называется «ошибкой ложного или сомнительного основания».
В-третьих, ошибка может состоять в том, что доказываемый тезис выводится из истинных аргументов, однако самый способ выведения, или демонстрация,— неправильный, логически ошибочный, так что доказываемый ложный тезис выводится только в силу ошибки, допущенной в ходе демонстрации. Этот вид ошибки называется «ошибкой в демонстрации, или в способе доказательства».
Само собой разумеется, порочность доказательства может быть обусловлена и соединением указанных ошибок. Например, ложность оснований может сочетаться с ошибкой в демонстрации.
Рассмотрим последовательно все три вида ошибок, возможных в доказательстве.
Читать дальше