Валентин Асмус - Учение логики о доказательстве и опровержении

Здесь есть возможность читать онлайн «Валентин Асмус - Учение логики о доказательстве и опровержении» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1954, Издательство: Госполитиздат, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учение логики о доказательстве и опровержении: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учение логики о доказательстве и опровержении»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Обнажая воочию маразм современной буржуазной мысли, поход против доказательства и доказательности, затеянный философскими мракобесами и декадентами, В.Ф. Асмус последовательно утверждает непреложную ценность доказательства в мышлении, цель которого ― не извращение, а утверждение истины. Ибо самым убийственным для отрицателей доказательства, и в то же время самым смешным в их действиях фактом, является то, что ненужность доказательства они пытаются (разумеется, безуспешно) «доказывать». Тем самым они на деле признают над собою безусловную власть того самого логического принципа, который они в реакционном «раже» бессмысленно отрицают. Ибо доказательство — отнюдь не второстепенный и не случайный элемент квалифицированного мышления. Доказательство есть жизненный нерв научного мышления, первейшее и необходимейшее условие научности всякого утверждения.В стремлении науки к доказательности обнаруживается одна из коренных и существеннейших черт научной мысли. Наука и научная мысль не терпят голословности. Научным любое утверждение становится лишь тогда, когда доказано.Для всех интересующихся проблемой подмены доказательств аргументацией в современной науке и философии.

Учение логики о доказательстве и опровержении — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учение логики о доказательстве и опровержении», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Распределение аксиом и постулатов в «Началах» Евклида не вполне соответствует этому различению. Хотя ряд постулатов Евклида принадлежит к области геометрия, а ряд его аксиом — к области более общего учения о величинах, последовательное разграничение аксиом и постулатов по степени их специального характера оказывается невозможным. Так, 7-я аксиома первой книги «Начал», утверждающая, что «совмещающиеся друг с другом равны между собой», есть, конечно, аксиома геометрии. Положение о параллельных, принадлежащее к области геометрии, помещалось Евклидом в числе аксиом (11-я аксиома первой книги«Начал») и только позднейшими комментаторами и издателями стало рассматриваться как постулат (5-й постулат той же книги).

В философии и математике XVII века понимание логической природы аксиом и постулатов изменилось. Ряд математиков и логиков этого века сущность аксиом стал видеть в их будто бы безусловной очевидности или самоочевидности. Согласно этому новому взгляду, аксиомы — такие основания доказательства, которые не доказываются в науке не в силу своей общепринятости, а в силу своей полной и безусловной очевидности. Существуют будто бы такие положения, которые, как только на них направляется наш ум, представляются ему с ясностью и очевидностью, исключающими возможность какого бы то ни было сомнения. Будучи совершенно очевидными, положения эти будто не требуют доказательства, ниоткуда не выводятся, представляют истины, непосредственно постигаемые умом, или, другими словами, являются «интуициями», притом интуициями не чувств, а ума. Аксиомы — не просто недоказываемые истины, какими их считали древние математики. Это — истины будто бы недоказуемые. Не нуждаясь ни в каком доказательстве, они составляют последнюю основу всех доказываемых в науке истин. Доказать — значит вывести доказываемое положение или прямо из таких самоочевидных аксиом, или вывести его из положений, которые если не прямо, то в последней инстанции сами опираются на самоочевидные аксиомы и доказываются с их помощью.

В этом учении существенным признаком аксиом провозглашается их непосредственно постигаемая самоочевидность (интуитивность) и их недоказуемость. Напротив, их общепризнанность и более или менее общий для всех наук или специальный характер получает значение свойства, производного от указанных основных свойств.

В связи с этим характерное для античных логиков и математиков понимание различия между постулатами и аксиомами у логиков и математиков XVII века в значительной мере утрачивает прежнее значение. Возникает тенденция к сближению постулатов с аксиомами. Поскольку некоторые постулаты представляются не менее очевидными, чем аксиомы, и поскольку непосредственная очевидность аксиом рассматривается как основание их недоказуемости, такие постулаты по сути уже не отличаются от аксиом и вместе с аксиомами образуют совокупность последних оснований всякого доказательства.

В то же время, однако, некоторые постулаты не поддавались этому сближению с аксиомами по признаку безусловной очевидности. Таков был прежде всего постулат Евклида о параллельных. Уже в самой своей формулировке он содержал понятие о неограниченном продолжении прямой — понятие, которое никак не могло быть признано ни самоочевидным, ни непосредственно постигаемым.

К этому присоединилось ещё и то, что целый ряд начальных положений (теорем и задач на построение) геометрии Евклида доказывался и решался вовсе без участия постулата о параллельных. Только в двадцать девятом предложении первой книги «Начал» постулат Евклида впервые использовался в качестве одного из оснований доказательства этого предложения.

Эта далеко не безусловная «очевидность» постулата о параллельных, а также «позднее» появление его в числе оснований, на которые опираются доказательства теорем геометрии Евклида, в сопоставлении со взглядом на аксиомы, как на истины самоочевидные, уже давно внушали математикам мысль — не является ли этот постулат теоремой, которая может быть доказана.

Попытки доказать 5-й постулат Евклида предпринимались ещё античными математиками и продолжались до Лобачевского. Великий русский математик во второй половине 20-х годов прошлого века пришёл к гениальному открытию, которое повлекло за собой коренную переработку взгляда логики на природу аксиом и на их значение для доказательства.

В начале своих исследований, посвящённых теории параллельных, Лобачевский пытался доказать постулат Евклида способом от противного. Предполагая, в противоречии с постулатом Евклида, что через точку вне данной прямой в одной с ней плоскости можно провести не одну единственную прямую, не пересекающуюся с данной, Лобачевский надеялся, что, развивая следствия из этого предположения, он придёт в конце концов к следствию, опровергающему это предположение и тем самым доказывающему истинность самого постулата Евклида.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учение логики о доказательстве и опровержении»

Представляем Вашему вниманию похожие книги на «Учение логики о доказательстве и опровержении» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учение логики о доказательстве и опровержении»

Обсуждение, отзывы о книге «Учение логики о доказательстве и опровержении» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x