Андрей Сафонов - Пушистые логарифмы

Здесь есть возможность читать онлайн «Андрей Сафонов - Пушистые логарифмы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Философия, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пушистые логарифмы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пушистые логарифмы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Он провел меня через сквозной подъезд школы на каменное крыльцо с античными колоннами. С крыльца открывался вид на поле, где паслись странные пушистые существа, похожие на каких-то инопланетных овец.– Вот они, наши логарифмы.– Логарифмы???– Да, показатели, чтобы при возведении в них нижний становился верхним. Тот, что есть, превращался в того, кем должен стать. Приглядись – тут сокрыто много тайн.

Пушистые логарифмы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пушистые логарифмы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нелинейная динамика проливает свет на внутренние процессы творчества: если бы в нем правил чистый хаос, это могло бы привести разве что к шизофрении, если бы правил только аналитический разум – были бы закрыты каналы для создания нового. Но в творчестве порядок творится из хаоса – так, из множества пролетающих идей рождается книга, а из случайных звуковых рядов появляется музыкальное произведение.

Поток окружающих нас явлений может показаться бессмысленным, но не сокрыты ли за этой бессмыслицей сокровенные аттракторы мечты?

Геометрия пчелиных сот и тайна шестиугольных кругов Даже элементарные - фото 3

Геометрия пчелиных сот и тайна шестиугольных кругов

Даже элементарные открытия, сделанные самостоятельно, могут сделать то, чего не сделают сотни зазубренных учебников, – вызвать настоящую теорию (изначально под этим словом пифагорейцы понимали мистический экстаз от соприкосновения с истиной). Теория – своего рода молния из страны смысла. Однажды, когда я готовил макароны, эта молния слегка коснулась меня. Я увидел, как раздувающиеся пузыри в кипящей воде в страшной давке за «место под солнцем» стали приобретать какие-то странные формы… Мгновенная вспышка, и я «увидел» ответ на вопрос, смутно терзавший меня с детства: почему в природе так часто встречаются шестиугольники? Пчелиные соты, клетки, узоры на панцирях черепах…

Шестиугольник – идеальная фигура, чтобы замостить плоскость без пробелов. Это уже что-то, т. к. для подобной цели не подойдут ни круги, ни семи- и девятиугольники. Но откуда пчелы знают о таких геометрических тонкостях? И почему не используют более простые треугольники или квадраты, которые тоже легко подгоняются друг к другу?

Для того чтобы пережить маленькую «теорию», делаем простую математическую модель без единой формулы. Возьмем горсть одинаковых монет. Одну поставим в центр, а другие расположим вокруг так, чтобы все они соприкасались друг с другом. Мы увидим между ними похожие на треугольники зазоры, из-за которых круглой плиткой мы плоскость не замостим. Но вот что интересно – сколько бы раз мы не проделывали этот эксперимент, монеток по краям всегда будет ровно шесть!

Представим теперь, что монетки начинают раздуваться, как пузыри, пытаясь отвоевать друг у друга пустое пространство. Конкуренция деформирует личности и целые народы, чего уж говорить о кругах… В случае равномерного давления шесть точек соприкосновения разобьют окружность на шесть дуг, каждая из которых в конечном итоге распрямится в отрезок, и мы получим идеальное шестиугольное замощение. Круг, шар – наиболее естественная форма заполнения пространства – из центра во все стороны. При «честной» конкуренции круги становятся шестиугольниками. В случае же неравной борьбы получаются пятиугольники и другие альтернативные формы «замощения».

Вряд ли данная геометрическая метаморфоза объяснит нам шестиугольность бензольного кольца, но на устройство сот, клеток, а возможно, и на какие-то тайны геополитики, вероятно, прольет какой-то свет.

Фрактал буржуйский сыр и проколы в матрице Однажды наблюдая с сыном за - фото 4

Фрактал «буржуйский сыр» и проколы в матрице

Однажды, наблюдая с сыном за поведением капель растительного масла в воде, я вновь пережил вспышку «теории», в пифагорейском смысле этого слова. В этот раз круги не давили друг на друга, как при кипении воды или в пчелиных сотах. Метаморфоза как будто свернула на соседнюю тропинку, и вместо привычных шестиугольников я увидел что-то вроде проколов в матрице.

Представим себе, что нам нужно замостить плоскость круглой плиткой сколь угодно малых размеров. Заполнить пространство как в случае с квадратами или шестиугольниками не получится: между окружностями всегда будут оставаться пробелы. Попытаемся заполнить их плиткой меньшего радиуса (именно так ведут себя пузыри, возникающие между пузырями). Очевидно, что пробелы не уйдут ни в этот раз, ни в следующий… Какие бы маленькие круги мы ни брали, всегда будет оставаться зазор, поэтому процесс можно потенциально продолжать до бесконечности.

Подобные структуры можно увидеть на поверхности свежесваренного кофе, в луже и везде, где давка не превращает их в многоугольники (хотя возможен и симбиоз, как в банке с мыльными пузырями).

Понятно, что в каждом случае процесс заполнения в какой-то момент заканчивается. Но то, что потенциально в природе, – актуально в математике, и чисто логически никто не мешает рассмотреть предельный случай, когда все пробелы заполнены бесконечностью уменьшающихся кругов. Данному математическому монстру я дал название «буржуйский сыр», что вполне характеризует экономические возможности данного принципа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пушистые логарифмы»

Представляем Вашему вниманию похожие книги на «Пушистые логарифмы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пушистые логарифмы»

Обсуждение, отзывы о книге «Пушистые логарифмы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x