Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Здесь есть возможность читать онлайн «Коллектив авторов - Теорема Геделя о неполноте [Фейк]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1989, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема Геделя о неполноте [Фейк]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема Геделя о неполноте [Фейк]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Теорема Геделя о неполноте [Фейк] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема Геделя о неполноте [Фейк]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математика и физика

Принято считать, что математика и физика совершенно не похожи друг на друга. Физики описывают мир, исходя из результатов экспериментов и наблюдений. Законы, управляющие Вселенной, будь то законы Ньютона или Стандартная модель физики элементарных частиц, должны устанавливаться эмпирически и затем приниматься за аксиомы, которые невозможно доказать логическим путем, а можно лишь проверить экспериментально. Математики же в некотором смысле независимы от мира. Их выводы и теоремы, например, свойства целых или вещественных чисел, никак не зависят от окружающей нас реальности. Математические истины должны быть верны в любом мире. И все же определенное сходство есть. В физике, и вообще в естественных науках, ученые формулируют законы, сублимируя результаты наблюдений. Затем они показывают, как результаты наблюдений могут быть выведены из получившихся законов. В математике происходит нечто подобное: математики сжимают результаты вычислительных экспериментов в аксиомы, а затем выводят из них теоремы.

Если бы Гильберт оказался прав, то математика была бы замкнутой системой, в которой нет места новым идеям. Существовала бы статичная замкнутая теория, объясняющая в математике все, и это было бы похоже на диктатуру. Чтобы математика развивалась, нужны новые идеи и простор для творчества. Недостаточно усердно работать, выводя все возможные следствия из фиксированного числа базовых принципов. Лично мне больше нравятся открытые системы, я не люблю жестких, авторитарных способов мышления.

Имре Лакатош (Imre Lakatos), бежавший в 1956 году из Венгрии и впоследствии занимавшийся философией науки в Англии, тоже считал, что математика похожа на физику. Он ввел понятие квазиэмпиричности, чтобы показать, что и математике не чужды эксперименты. Например, еще в 1742 году Кристиан Гольдбах опытным путем пришел к предположению, что любое четное число больше двух можно представить в виде суммы двух простых чисел. Предположение Гольдбаха успешно проверено для чисел до 1014, но строго не доказано. Мне кажется, что математика квазиэмпирична. Иными словами, она отличается от физики (которая истинно эмпирична), но, вероятно, не так сильно, как полагает большинство людей.

Новые аксиомы

Идея добавления новых аксиом не чужда математикам. Возьмем для примера пятый постулат Евклида: через выбранную точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. Столетиями геометры ломали голову, пытаясь доказать это, исходя из остальных постулатов Евклида. Не удалось. Наконец, математики поняли, что пятую аксиому можно заменить и получить неевклидову геометрию криволинейных пространств, в частности сферического и седлообразного. Другим примером может служить закон исключенного среднего в логике и аксиома выбора в теории множеств, которыми охотно пользуется в своих доказательствах большинство математиков. Но ведь есть ученые, которые их не признают и исследуют так называемую интуиционистскую логику и конструктивистскую математику. Оказывается, математика пока не стала монолитной системой абсолютных истин!

Другой очень интересной аксиомой может стать утверждение ?P не равно NP?, где P и NP ? названия классов задач. К классу NP относятся задачи, для которых предлагаемое решение можно проверить очень быстро. Например, для задачи ?найти множители числа 8 633? предлагаемое решение ?97 и 89? быстро проверяется простым перемножением. (Существует строгое определение понятия ?быстро?, но подробности здесь не имеют значения.) Класс P составляют задачи, которые можно быстро решить, не имея предварительного предположения. Вопрос, ответа на который не знает никто, состоит в том, можно ли быстро решить любую задачу класса NP. (Есть ли способ быстро найти множители числа 8 633?) Иначе говоря, тождественны ли классы P и NP? Это один из пунктов списка ?Проблем тысячелетия? Математического института Клэя (Clay Millennium Prize Problem), за решение каждой из которых назначена награда в $1 млн.

Большинство специалистов по вычислительной технике убеждено, что P не равно NP, но строгое доказательство пока не найдено. Истинность такого предположения подтверждается множеством эмпирических свидетельств, но можно ли на этом основании принять его в качестве аксиомы? Специалисты по вычислительной технике именно так и поступили. Правда, остается вопрос о надежности некоторых широко применяемых криптографических систем: считается, что взломать их невозможно, но никто не может этого доказать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема Геделя о неполноте [Фейк]»

Представляем Вашему вниманию похожие книги на «Теорема Геделя о неполноте [Фейк]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теорема Геделя о неполноте [Фейк]»

Обсуждение, отзывы о книге «Теорема Геделя о неполноте [Фейк]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x