Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем

Здесь есть возможность читать онлайн «Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2017, ISBN: 2017, Издательство: «Эдитус», Москва, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Актуальность сложности. Вероятность и моделирование динамических систем: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Актуальность сложности. Вероятность и моделирование динамических систем»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Исследуется проблема сложности в контексте разработки принципов моделирования динамических систем. Применяется авторский метод двойной рефлексии. Дается современная характеристика вероятностных и статистических систем. Определяются общеметодологические основания неодетерминизма. Раскрывается его связь с решением задач общей теории систем. Эксплицируется историко-научный контекст разработки проблемы сложности.

Актуальность сложности. Вероятность и моделирование динамических систем — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Актуальность сложности. Вероятность и моделирование динамических систем», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В качестве фундаментального свойства, выступающего основой авторегуляции в открытых системах, Берталанфи выделял эквифинальность и давал последней точное определение.

«Система элементов Q(x, у, z, t) является эквифинальной в каждой подгруппе элементов Q, если мы можем изменить начальные условия Q(x,y,z) без изменения значения Q(x,y,z,t)» [99]. К примеру, в системе химических реакций данное свойство обнаруживается в том, что конечные концентрации будут независимы от начальных. Как замечал А.Рапопорт, вмешательство в систему, выражающееся в добавлении или изъятии произвольных количеств разных веществ, не нарушает «конечного» состояния системы. Система будет как бы «стремиться» к конечному состоянию, детерминированному ее собственной структурой, как если бы она была живым организмом, стремящимся к «цели» [100].

Вместе с тем, оказалось, что свойство живых систем, характеризуемое как «эквифинальность», может быть выведено в качестве следствия обобщенных законов термодинамики в применении к сложным структурам [101]. Берталанфи показал, что для открытых систем, стремящихся к подвижному равновесию, второй закон термодинамики принимает модифицированный вид: скорость возрастания энтропии внутри системы стремится в этом случае к минимальному значению, соответствующему динамическому равновесию. В такой форме данный закон относится к системам более общего типа, нежели те, к которым относится второй закон термодинамики в его обычной формулировке [102].

Сам Берталанфи писал, что в дальнейшем была выявлена возможность применения в биологии, психологии и социологии математических моделей, неприложимых в физике и химии. В определенном плане эти науки стали превосходить физику как образец точности. Одновременно выяснился изоморфизм таких моделей, построенных для различных областей [103].

Тем самым отмечалась способность ОТС к охвату ряда новых проблем и их решению, причем таких, которые отвергались ранее как «метафизические». И одновременно ОТС оценивалась лишь как одна из теорий, реализующих новую парадигму, концептуальную схему, совершающую сдвиг в исследуемых проблемах и правилах научной деятельности.

В своих статьях 60-х годов Берталанфи вел речь об ОТС в 2-х смыслах. В широком смысле ОТС выступает как некая совокупность идей и проблем исследования и конструирования систем, в теоретическую часть которой он включает: 1) кибернетику; 2) теорию информации; 3) теорию игр; 4) теорию решений; 5) топологию; 6) факториальный анализ; 7) собственно общую теорию систем, стремящуюся из общего определения системы как комплекса взаимодействующих элементов выработать производные понятия, описывающие функционирование и поведение организованных целых.

Следовательно, лишь последнее являлось по Берталанфи теорией систем в подлинном смысле слова, и ее разработке уделял он основное внимание. В другом же случае ОТС выступает обширным комплексом научных дисциплин, реализующих тот или иной аспект системного подхода, перечень которых, видимо неполон, к тому же не ясны критерии их отнесения к единому течению ОТС. Можно, видимо, утверждать, что в таком широком определении ОТС Берталанфи искал способ какой-то упорядоченности, систематизации эмпирической действительности системных исследований, не давая в явном виде средств и аппарата подобного упорядочивания.

Итак, в данном варианте ОТС в центр системной проблематики ставились «организованные целые», «организованные сложности», отличительным признаком которых признавалось наличие сильных взаимодействий между их компонентами, а также их нелинейность. И в этом смысле процедура системного описания, исследования объектов была противоположна аналитической процедуре классической науки, восходящей еще к Галилею и Декарту. Там, где невозможно реально, логически или математически «извлекать» части из целого, затем их «собирать», восстанавливая целостную картину, а также невозможно простое наложение частных процессов для получения процесса в целом, там возникает необходимость в системном подходе [104].

Для этой цели использовались различные модели, математические средства и т.д., в соответствии с чем и может идти речь о том или ином способе реализации системного исследования.

В своей ОТС, понимаемой в узком смысле слова, JI. Берталанфи применял так называемую классическую математику; и считал, что на этой основе можно установить всеобщие формальные свойства систем вообще, а также разработать средства для их исследования и описания. Широкая общность и приложимость классической математики служила здесь гарантией отнесения некоторых формальных системных свойств к любым объектам, которые представляют собой системы [105]. В качестве примера назывались обобщенные принципы кинетики, применяемые, в частности, к популяциям молекул или биологических существ, т.е. к химическим и экологическим системам; уравнения диффузии, используемые в физической химии и для анализа процессов распространения слухов и т.д.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Актуальность сложности. Вероятность и моделирование динамических систем»

Представляем Вашему вниманию похожие книги на «Актуальность сложности. Вероятность и моделирование динамических систем» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Актуальность сложности. Вероятность и моделирование динамических систем»

Обсуждение, отзывы о книге «Актуальность сложности. Вероятность и моделирование динамических систем» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x