При этом здесь прежде всего выступает трудность провести определенное различение касательно того, какие из определении предмета могут быть включены в дефиниции и какие из них должны быть отнесены в теоремы . Относительно этого не может быть никакого принципа. Правда, может показаться, что такой принцип заключается, например, в том, что присущее некоторому предмету непосредственно принадлежит к дефиниции, относительно же остального, как опосредствованного, следует сначала выявить его опосредствование. Однако содержание дефиниции есть некоторое определенное вообще содержание и вследствие этого само оно есть по существу нечто опосредствованное; оно имеет лишь некоторую субъективную непосредственность, т. е. субъект делает некоторое произвольное начало и допускает, чтобы некоторый предмет признавался в качестве предпосылки. А так как это есть вообще некоторый конкретный внутри себя предмет и так как он должен подвергнуться также и подразделению, то получается множество определений, которые по своей природе суть опосредствованные и принимаются за непосредственные и недоказанные не в силу какого–нибудь принципа, а лишь согласно субъективному определению. — И у Эвклида , который искони справедливо признан мастером в этом синтетическом способе познания, под названием аксиомы фигурирует предпосылка о параллельных линиях , которая считалась требующей доказательства и относительно которой делались разные попытки восполнить этот пробел. Некоторые математики думали, что они открыли в некоторых других теоремах такие предпосылки, которые должны были бы быть не приняты непосредственно, а доказаны. Что же касается упомянутой аксиомы о параллельных линиях, то можно относительно этого заметить, что как раз в ней видно правильное чутье Эвклида, точно оценившего как стихию, так и природу своей науки; доказательство этой аксиомы нужно было бы вести, исходя из понятия параллельных линий; но такой способ доказательства так же мало входит в задачу его науки, как и дедукция выставляемых им дефиниций, аксиом и вообще его предмета — самого пространства и ближайших его определений, измерений; так как такую дедукцию можно вести только из понятия, а последнее лежит вне своеобразного характера эвклидовой науки, то указанные дефиниции, аксиомы и т. д. необходимым образом представляют собой для этой науки некоторые предпосылки , нечто относительно–первое.
Аксиомы , — чтобы сказать по этому поводу несколько слов и о них, — принадлежат к тому же классу. Их обыкновенно несправедливо принимают за абсолютно–первые, как будто они сами по себе не нуждаются ни в каком доказательстве. Если бы это было на самом деле так, то они были бы чистыми тавтологиями, так как только в абстрактном тождестве нет никакой разности и, следовательно, не требуется также и никакого опосредствования. Но если аксиомы представляют собой нечто большее, чем тавтологии, то они суть положения , заимствованные из какой–либо другой науки , так как для той науки, которой они служат в качестве аксиом, они должны быть предпосылками. Они поэтому суть, собственно говоря, теоремы , и притом большей частью из логики (258). Аксиомы геометрии и суть подобного рода леммы (259), логические положения, которые, впрочем, приближаются к тавтологиям вследствие того, что они касаются лишь величины и поэтому качественные различия в них стерты; о главной аксиоме, о чисто количественном умозаключении, речь была выше (259). — Поэтому рассматриваемые сами по себе, аксиомы точно так же нуждаются в доказательстве, как и дефиниции и подразделения, и их не делают теоремами только потому, что они как относительно–первые принимаются для известной точки зрения за предпосылки.
Касательно содержания теоремы следует теперь провести то более детальное различение, что, так как это содержание состоит в некотором соотнесении определенностей реальности понятия, то эти соотношения могут быть либо более или менее неполными и отдельными отношениями предмета, либо же таким отношением, которое охватывает все содержание реальности и выражает его определенное соотношение. Но единство совокупных определенностей содержания равно понятию ; предложение, содержащее это единство, само поэтому есть опять–таки дефиниция, но такая дефиниция, которая выражает не только непосредственно воспринятое понятие, но понятие, развернутое в свои определенные, реальные различия, или, иначе говоря, полное существование понятия. И то и другое вместе взятое представляет поэтому идею .
Читать дальше
Конец ознакомительного отрывка
Купить книгу