Однако данное правило справедливо не во всех случаях. То есть во многих случаях недопустимо опускать скобки. Например, когда конъюнктивная связка понятия a осуществляется с двумя другими понятиями, связанными отношением импликации и отделенными круглыми скобками, опускать последние недопустимо (a^(b ® c)). Это очевидно, так как в противном случае пришлось бы вначале осуществлять связку конъюнкции и только затем импликацию. Из школьного курса математики мы знаем, что опускать скобки в подобном случае нельзя. Иллюстрацией подобной ситуации может быть следующий пример: 2 × (2 + 3) = 10 и 2 × 2 + 3 = 7. Результат очевиден.
В связи со сказанным выше можно отметить, что далеко не каждое символьное выражение высказываний является формулой. Для этого необходимо наличие определенных признаков. Например, формула должна быть построена правильно. Примерами такого построения могут быть: (a^b), (a Ъ b), (a ® b), (a є b). Это построение отмечается как ППФ, т. е. правильно построенная формула. Примерами неправильно построенных формул могут быть: a^b, a Ъ b, Ъb, a ® b, (a^b) и др. В первых трех случаях неправильность формулы заключается в том, что понятия, объединенные связками, должны быть заключены в скобки. Последняя формула имеет незакрытую скобку, третий же пример характеризуется тем, что одно простое понятие не объединено с другим, несмотря на то что имеется символ дизъюнкции.
29. Коммуникативность коньюнкции
Логика– это, безусловно, самостоятельная наука, имеющая свой понятийный аппарат, инструментарий, информационную базу. Любая самостоятельная наука отделена от других и зачастую в корне отличается подходом к тому или иному предмету. Это следует иметь в виду, когда мы рассматриваем с точки зрения логики конструкции русского языка. Логика изучает такие построения более изолированно. Так, зачастую фактор времени не принимается в расчет при рассмотрении различных суждений. В русском языке фактор времени, в соответствующих случаях, учитывается всегда. Здесь следует сказать о коммутативности конъюнкции, которая неразрывно связана с указанными выше особенностями языка и логики. Коммутативность – это эквивалентность суждений (высказываний), когда (a^b) є (b^a). В языке закон коммутативности конъюнкции не действует, так как принимается во внимание фактор времени. Действительно, невозможно себе представить эквивалентность некоторых суждений, одно из которых по времени раньше другого, и наоборот. Например, не будут эквивалентны высказывания «Пошел дождь, и мы промокли» (a^b) и «Мы промокли, и пошел дождь» (b^a). Та же ситуация просматривается в высказываниях «Грянул выстрел, и зверь упал» и «Зверь упал, и грянул выстрел». Очевидно, здесь учитывается фактор времени, согласно которому одно событие или действие, отраженное в сложном суждении, предшествует другому, отчего зависит смысл всего высказывания.
Логика абстрагируется от времени и оценивает суждение только с точки зрения его правильного построения, а также истинности либо ложности. В связи с этим приведенные выше высказывания являются эквивалентными, так как в каждом отдельно взятом случае истинны обе их части.
Таким образом, конъюнктивные высказывания в логике коммутативны, использование же в суждениях союза «и» с точки зрения языка (в случае, когда учитывается фактор времени) некоммутативно.
Несмотря на то что выше были указаны предлоги, при помощи которых образуется конъюнкция, нельзя говорить о том, что при отсутствии в суждении этих предлогов конъюнкция невозможна. Это не так. Зачастую в предложениях, представляющих собой сложные суждения, в качестве связок используются разные знаки препинания. Например, это может быть запятая или тире, а иногда и точка.
Используемые в высказываниях знаки препинания ставятся между простыми суждениями и связывают их друг с другом. В качестве примера использования знаков препинания как логических связок можно привести предложение «Тучи разошлись, выглянуло солнце» или «На улице ударил мороз, вся живность попряталась, на крышах образовались сосульки». В целом вопросами языкового выражения конъюнкции занимались многие ученые. Поэтому данный вопрос хорошо проработан и освещен.
30. Отрицание сложных суждений
Отрицание сужденияв логике – это замена существующей связки внутри сложного высказывания на другую, противоположную последней. Если мы говорим о формуле, в которой можно выразить отрицание сложных суждений, то нужно отметить, что отрицание графически выражается как горизонтальная черта над отрицаемым суждением. Таким образом, мы получим два понятия, объединенных логической связкой, над которыми проведена горизонтальная черта. Если такая черта уже есть, то для осуществления отрицания необходимо такую черту удалить.
Читать дальше
Конец ознакомительного отрывка
Купить книгу