Д. Шадрин - Логика

Здесь есть возможность читать онлайн «Д. Шадрин - Логика» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2007, ISBN: 2007, Издательство: Array Конспекты, шпаргалки, учебники «ЭКСМО», Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Информативные ответы на все вопросы курса «Логика» в соответствии с Государственным образовательным стандартом.

Логика — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Понятие сложных суждений неразрывно связано с конъюнкцией, дизъюнкцией, импликацией, эквиваленцией и отрицанием. Это так называемые логические связки. Они используются в качестве объединяющего звена, привязывающего одно простое суждение к другому. Именно так образуются сложные суждения. То есть сложные суждения– это суждения, созданные из двух простых.

Конъюнкция(a^b) – это способ связи простых суждений в сложные, при котором истинность полученного суждения напрямую зависит от истинности составных. Истинность таких суждений достигается только тогда, когда оба простых суждения (и a, и b) так же истинны. Если хотя бы одно из данных суждений ложно, то ложным следует признать и образованное из них новое, сложное суждение. Например, в суждении «Этот автомобиль очень качественный (a) и пробежал всего десять тысяч метров (b)» истинность зависит как от его правой стороны, так и от левой. Если оба простых суждения истинны, то истинно и сложное, образованное из них. В противном случае (если хотя бы одно из простых суждений ложно) оно является ложным.

Дизъюнкция(a Ъ b) бывает строгой и нестрогой. Отличие между этими двумя видами дизъюнкции состоит в том, что при нестрогом виде члены ее не исключают друг друга. Примером нестрогой дизъюнкции может быть: «Для получения заготовки деталь можно довести на станке (a) или предварительно обработать напильником (b)». Очевидно, что здесь а не исключает b и наоборот. Истинность подобного сложного суждения зависит от истинности его членов следующим образом: если ложны оба члена, ложным признается и образованное при их посредстве дизъюнктивное суждение. Однако, если ложно только одно простое суждение, такая дизъюнкция признается истинной.

Эквивалентнцияхарактеризуется тем, что образованное сложное суждение истинно только в тех случаях, когда истинны оба простых суждения, входящих в его состав, и ложно при ложности обоих этих суждений. В буквенном выражении эквивалентность выглядит как a є b.

При отрицании суждения, отображающееся как a, истинно тогда, когда ложно отрицаемое понятие. Это связано с тем, что отрицание и отрицаемое простое суждение не только противоречат, но и исключают (отрицают) друг друга. Таким образом, получается, что, когда истинно понятие a, ложно понятие a. И наоборот, если ложно a, то отрицающее его a является истинным.

Импликация(a ® b) истинна во всех случаях, кроме одного. Другими словами, если оба входящих в импликацию простых суждения истинны или ложны либо если ложно суждение a, импликация истинна. Однако при ложности суждения b ложным становится и сама импликация. Это можно рассмотреть на примере: «Мы бросим исправный патрон в костер (a), он взорвется (b)». Очевидно, что если первое суждение верно, то верно и второе, так как взрыв патрона, брошенного в костер, произойдет с неизбежностью.

28. Выражение высказываний

Выражение высказыванийпроисходит при помощи символов– переменных и знаков, обозначающих логические термины. Других символов для этой цели нет. Переменные высказывания выражаются в виде букв латинского алфавита (a, b, c, d и т. д.). Такие буквы называют переменными высказываниями, а также пропозициональными переменными. Говоря простым языком, под этой группой символов понимаются простые суждения, составляющие высказывание. Выражаются данные суждения в виде повествовательных предложений. Другая группа символов, использующаяся для выражения высказываний в виде формул, это знаки. Они обозначают логические термины, такие как конъюнкция и дизъюнкция, которая может быть строгой и нестрогой, отрицание, эквиваленция и импликация. Конъюнкция отображается в виде галочки, направленной вверх (^), дизъюнкция как галочка, направленная вниз (Ъ). При строгой дизъюнкции выше галочки ставится точка. Импликация имеет знак «®», отрицание (-), эквиваленция (є).

Последним видом символов, при помощи которых выражаются высказывания, являются круглые скобки.

Символы, обозначающие логические термины, типы связки, характеризуются разной силой. Так, связка ^ считается самой сильной, т. е. она связывает сильнее всех остальных. Связка Ъ сильнее, чем ®, что важно только в некоторых случаях. Так, определение силы связок становится немаловажным в случае записи формул без использования скобок. Если мы имеем высказывание, выраженное формулой (a^b)Ъc, можно не писать скобки, а прямо указывать, что a^bЪc. То же правило действует и при использовании символа ®.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика»

Представляем Вашему вниманию похожие книги на «Логика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Логика»

Обсуждение, отзывы о книге «Логика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x