При абстрагирующем подходе к окружающему нас миру мы познаем в опыте простые пространственно-временные формы "тел" - не геометрически идеальных тел, но именно определенных тел, которые оказываются предметами опыта, и содержание которых- содержанием действительного опыта. Сколь бы произвольно мы не мыслили эти тела в своей фантазии, свободные, "идеальные" в определенном смысле возможности, достигаемые таким способом, являются ничем иным, как геометрическими, "чистыми" формами, начертанными в идеальном пространстве- "чистые" тела, "чистые" прямые, "чистые" плоскости, а также "чистые" фигуры, трансформации "чистых" фигур и их деформации. Итак, геометрическое пространство - это не пространство, сконструированное фантазией, и вообще не пространство некоего воображаемого (мыслимого) мира. Фантазия может лишь превратить чувственные формы опять-таки в чувственные формы. И эти формы, независимо от того, существуют ли они в действительности или в нашей фантазии, различимы лишь по степени: линия, более или менее прямая, плоскость, более или менее ровная, большая или меньшая окружность и т.д.
Вещи чувственно созерцаемого мира вообще во всех своих изменяющихся свойствах и при всех своих отклонениях представляют некий тип; их тождественность самим себе, их равенство себе (Sich-Selbst-Gleichsein) и равная длительность, их равенство с другими вещами оказывается чем-то случайным. Это же характерно и для всех изменений и для всех возможных тождеств и изменений вещей. Соответственно, это же характерно и для абстрактно понятных форм эмпирически созерцаемых тел и их соотношений. Градуальность рассматривается как большая или меньшая степень совершенства. Здесь, как обычно, совершенство понимается исключительно в практическом смысле, а именно, как то, что полностью удовлетворяет специальные практические интересы. Однако при существующей постоянной смене интересов то, что кажется полностью удовлетворительным для одного, для другого человека таковым не является; причем устанавливается определенная граница возможностей, например, технических возможностей совершенства (возможность выпрямить прямую, сделать плоскость более ровной). Вместе с человечеством развивается, конечно, и техника, и заинтересованность в повышении технической точности; тем самым идеал совершенства все более и более отодвигается вдаль. Поэтому перед нами всегда открытый горизонт возможного улучшения, всегда отодвигаемого вдаль.
Не углубляясь в существо - этого систематически никто пока не делал и это отнюдь не так легко, - уже здесь можно сказать, что практика усовершенствования осуществляется в свободном проникновении "все снова и снова" за горизонт возможного усовершенствования вплоть до предельных форм (Limes-Gestalten), к которым, как к некоему инвариантному и никогда не достижимому идеалу, стремится реальный ряд совершенствования. Мы геометры, поскольку интересуемся идеальными фигурами и последовательно занимаемся тем, что пытаемся определить их и заново сконструировать новые фигуры из уже определенных нами. Аналогичным образом обстоит дело и в других областях - занимаясь измерением времени, мы - математики "чистых" формообразований, универсальная форма которых - идеальное пространство-время.
Вместо реальной практики - будь то практика, осуществляющаяся в действии или же обдумывающая эмпирические возможности, или же практика, имеющая дело с действительными и реально-возможными телами, - теперь мы имеем идеальную практику "чистого мышления", относящуюся исключительно к царству чистых предельных форм. Она складывалась в длительном процессе истории, в интерсубъективной социализации обычных методов идеализации и конструирования, ставших привычно используемыми средствами, с помощью которых можно достичь новых результатов. Таков, в частности, в качестве поля деятельности бесконечный и все же замкнутый внутри себя мир идеальных объектов. Как и все достижения культуры, возникающие благодаря человеческому труду, они объективно познаваемы и используются так, что нет необходимости вновь эксплицировать смысл их создания; они схватываются в апперцепции и рассматриваются операционально благодаря тому, что они обрели чувственно телесную форму, например, в языке и письменности. Аналогичным образом функционируют и чувственные "модели", к которым, в частности, принадлежат изображения на бумаге, постоянно используемые в труде, различного рода учебные схемы, полезные для читателей и студентов и т.п. Аналогичным же образом понимаются и объекты культуры (клещи, сверла и др.), в них "зримы" специфические культурные свойства и вместе с тем то, что придает специфический смысл этим качествам, явно не обнаруживается. Достижения прошлого, существующие в этой форме в методологической практике математиков можно уподобить осадочным телам. Они делают возможным духовные занятия в геометрическом мире идеальных предметов. (Геометрия выступает у нас как представитель всей математики пространства и времени.)
Читать дальше