Таким образом, получается, что равенство « a = b» есть отношение, высказываемое об имени «а» некоторого предмета и об имени «и» некоторого предмета и состоящее в том, что предметы обоих имен совпадают друг с другом. Здесь учитывается пара {предмет, его имя}. Поэтому можно сказать (и к этому обороту речи прибегает Фреге), что « a = b» есть высказывание об « a » и « b » лишь постольку, поскольку они нечто обозначают.
Однако такое решение не может удовлетворить Фреге. Ведь обозначение предмета некоторым знаком зависит от нашего произвола. «Никому, ― пишет Фреге, ― нельзя запретить употреблять в качестве знака чего-либо любой произвольно произведенный процесс или предмет. Но тем самым предложение a = b теряет связь с существом дела и становится относящимся только к нашему способу обозначения; мы не выражаем в нем как будто никакого знания в собственном смысле» (там же).
Что предложения, относительно смысла которых можно утверждать, что он ограничивается выражением того, что у предмета, называемого « a », есть еще имя « b », существуют, это несомненный факт. Таково, например, предложение (3) «Цицерон есть Марк Туллий» [10] Пример не принадлежит Фреге, но часто используется современными авторами при обсуждении вопросов смысла.
. Можно считать, что и в этом предложении содержится некоторое знание, состоящее в том, что человек по имени Цицерон иначе называется Марком Туллием. Но подобное знание относится не к самым предметам, а к тому, какими знаками мы обозначаем эти предметы.
Но разве все предложения о равенстве таковы? Разве среди них нет таких, которые выражают знание в собственном смысле? Разве предложение (2) или предложение (4) «Аристотель есть воспитатель Александра Великого и ученик Платона» не принадлежат к их числу?
Предлагаемое решение вопроса обязывает рассматривать предложение (4) как вполне аналогичное предложению (3). Это значит, что предложение (4) должно пониматься так, будто в нем утверждается только то, что человек, по случаю получивший имя «Аристотель», – это тот же человек, которого называют именем «Воспитатель Александра Великого и ученик Платона»; при этом на последнее имя мы не имеем права смотреть как на выражение, состоящее из осмысленных частей («воспитатель», «Александр Великий», «воспитатель Александра Великого» и др.) и сообщающее те сведения, что обозначенный этим именем человек учился у Платона и преподавал Александру, а должны считать его знаком, по произволу людей обозначающим Аристотеля и не несущим в себе какой-либо иной информации. Ошибочность такой трактовки этого предложения очевидна. Не подлежит сомнению, что предложения (3) и (4) различны по своей ценности для познания.
Предлагаемый выход из положения по существу не дает возможности различить предложения « a = a» и « a = b» с точки зрения их познавательного значения. Если знак «а» отличен от знака « b » только по своей фигуре, а не как знак, т. е. не в силу того способа, каким он обозначает нечто, то между указанными предложениями не будет существенной разницы в случае, когда предложение « a = b» истинно (различие, состоящее в том, что в первом из предложений справа и слева от знака равенства стоят фигуры, имеющие одинаковые, а во втором предложении – разные очертания, не существенно для познания).
Различение значимости предложений « a = a» и « a = b» и выявление познавательной ценности предложений последнего вида окажется возможным, если к каждому имени отнести не только тот предмет, который обозначается этим именем (значение имени), но и тот способ, каким имя обозначает предмет, ― его смысл.
Фреге следующим образом разъясняет понятие смысла. Пусть a , b и c суть прямые, соединяющие вершины некоторого треугольника с серединами противоположных сторон. Тогда точка пересечения прямых a и b совпадает с точкой пересечения прямых b и c . Мы имеем, следовательно, различные обозначения (имена) для одной и той же точки, и эти имена («точка пересечения прямых a и b и «точка пересечения прямых b и c ») указывают, говорит Фреге, на тот способ, каким обозначаемое нам дано. В самом деле, оба имени по-разному обозначают один и тот же предмет. Первое имя обозначает его как точку пересечения прямых a и b, а второе – как точку пересечения прямых b и c . В обоих случаях предмет дан нам по-разному. Различие в способе, каким предмет дан нам в его обозначениях, есть различие в сведениях о предмете, содержащихся в его именах. Поэтому предложение «Точка пересечения прямых a и b есть точка пересечения прямых b и c » представляет собой настоящее знание.
Читать дальше