Понятие энтропии используется также в разрешении проблемы жизни, в которой оперируют ее отрицательными величинами, так называемой негэнтропией, в теории информации, в которой она характеризует меру неопределенности ситуации, в теориях самоорганизации, таких как синергетика, диссипативные структуры и др.
Резюме и вопросы для обсуждения
1) Формулировка понятий энтропии и второго начала термодинамики в середине XIX века привела к двум проблемам, вошедшим в число центральных для всей науки и нерешенных в полном объеме до сих пор.
2) Первая проблема, практически незатронутая в этом пункте, — это проблема обратимости во времени уравнений механики, вступающей в противоречие для неравновесных систем с временной необратимостью происходящих в них процессов.
3) Вторая проблема связана с противоречием между вторым началом и прогрессивной эволюцией в сторону упорядочения, усложнения.
4) Эта проблема искусственна и возникла, скорее всего, из-за непонимания природы энтропии во всей ее глубине. Оказалось, что энтропия не может служить мерой сложности и что эволюция в сторону усложнения вообще не противоречит эволюции в сторону возрастания энтропии. Полуторавековое обсуждение этой проблемы способствовало более глубокому осмыслению понятия энтропия.
5) И последнее обсуждение этой проблемы в свое время стимулировало создание синергетики, поднявшей теорию самоорганизации на новый уровень.
4. Концепции и принципы неклассического — полевого, квантового и квантово-полевого физического естествознания
4.1. Электромагнитное поле фарадея-Максвелла, электромагнитное взаимодействие и принципы специальной теории относительности — теории пространства-времени Эйнштейна и Минковского
Классическая физика и соответствующее ей классическое естествознание завершились созданием термодинамики. На очереди стояли учения об электричестве и магнетизме, которые, казалось, должны были получить понимание в рамках традиционного классического мировоззрения. Однако этому не суждено было сбыться. Познание тайн электромагнетизма привело к началу нового этапа в физике, во всем естествознании и во всей науке — привело к этапу неклассической рациональности.
Новая рациональность начиналась еще в недрах классической рациональности фактически так. В XVIII веке французом Шарлем Кулоном (1736–1806) был открыт знаменитый закон взаимодействия точечных электрических зарядов — закон Кулона:, где q1, q2 — электрические заряды, r — расстояние между зарядами, k — коэффициент пропорциональности, определяемый выбором единиц измерения величин зарядов и расстояния. Закон Кулона, как видим, фактически совпадает, по виду и форме, с законом всемирного тяготения Ньютона, и это позволяло физикам многие годы думать, что электрическое взаимодействие сводимо к гравитационному тяготению. Но это было кажущееся совпадение. Экспериментальные исследования Гальвани (1737–1798) и Вольта (1745–1827) показали тесную связь электрических, химических (и даже биологических) явлений. Вопрос об отношении электричества и магнетизма оставался запутанным до открытия Эрстеда (1777–1851) в 1820 году, когда он случайно, в ходе лекционного демонстрационного эксперимента, обнаружил влияние, оказываемое электрическим током, пропускаемым по проволоке, на компас, оказавшийся вблизи от проволоки. С 1820 года интенсивной разработкой первой теории электромагнетизма — электродинамики, занялся французский ученый Ампер (1775–1836). Теория Ампера была создана по образу и духу «Начал» Ньютона, что позволило англичанину Джеймсу Максвеллу назвать французского ученого «Ньютоном электричества». Созданная Ампером электродинамика, основанная на представлении о мгновенной передаче электромагнитных взаимодействий (т. е. с бесконечной скоростью), должна быть отнесена к теориям типа теорий дальнодействия.
Однако последовательную, единственно признаваемую и сегодня, теорию электромагнитных явлений удалось построить лишь самому Максвеллу, который отказался от представления о дальнодействии й взял за основу в электромагнетизме идею о поле, выдвинутую впервые великим физиком-экспериментатором Майклом Фарадеем (1791–1867), который благодаря своим опытам доказал также тождественность различных видов электричества. Установленные Фарадеем законы электролиза доказывали выдающийся факт природы — дискретность электрического заряда. Начиная с 30-х годов XIX столетия, у Фарадея, под влиянием проводимых им экспериментов, начинает формироваться идея о передаче электромагнитных взаимодействий посредством поля. По мнению А. Эйнштейна, идея поля была самым важным открытием не только в физике, но во всей классической науке, со времен Ньютона (Эйнштейн тогда еще не подозревал, что электромагнетизм, эксперименты Фарадея и теория Максвелла дали начало новому этапу науки — неклассическому).
Читать дальше