Бертран Рассел
Мое философское развитие
Глава 7 «Principia mathematical»: Философские аспекты
На протяжении всего периода от 1900 до 1910 года Уайтхед и я отдавали большую часть нашего времени тому, что в конце концов стало “Principia Mathematica”. Хотя третий том этого труда был издан лишь в 1913 году, работа над ним (кроме вычитки гранок) была завершена уже в 1910 году, когда мы сдали рукопись в издательство Кембриджского университета. Моя книга “Принципы математика”, которую я закончил 23 мая 1902 года, была слабым и весьма незрелым наброском будущего труда, но отличалась, однако, от него тем, что содержала дискуссии с другими философскими концепциями математики.
Наши проблемы были двух родов: философские и математические. Вообще говоря, Уайтхед оставил философские проблемы мне. Что касается математических проблем, то Уайтхед придумал большую часть нотации, за исключением того, что было взято у Пеано; я проделал большую часть работы, связанной с рядами, а Уайтхед проделал большую часть всего остального. Но это относится только к первым наброскам. Каждая часть исправлялась ло три раза. Когда один из нас заканчивал набросок, он посылал его другому, и тот обычно значительно изменял его. После этого автор первоначального варианта приводил все к окончательному виду. Вряд ли есть хоть одна строчка во всех трех томах, которая не была бы плодом нашего совместного труда.
Главная цель “Principia Mathematica” состояла в доказательстве того, что воя чистая математика следует из чисто логических предпосылок и пользуется только теми понятиями, которые определимы в логических терминах. Это было, разумеется, антитезой учению Канта, и первоначально задача виделась в том, чтобы внести лепту в дело опровержения “того софиста-филистимлянина”, по выражению Георга Кантора, добавлявшего для вящей точности: “который так плохо знал математику”. Но со временем работа продвинулась еще в двух направлениях. С математической точки зрения были затронуты совершенно новые вопросы, которые потребовали новых алгоритмов и сделали возможным символическое представление того, что ранее расплывчато и неаккуратно выражалось в обыденном языке. С философской точки зрения наметились две противоположные тенденции: одна-приятная, другая-неприятная. Приятная состояла в том, что необходимый логический аппарат вышел не столь громоздким, как я вначале предполагал. Точнее, оказались ненужными классы. В “Принципах математики” много обсуждается различие между классом как единым (one) и.классом как многим (many). Вся эта дискуссия вместе с огромным количеством сложных доказательств оказалась, однако, ненужной. В результате работа в ее окончательном виде была лишена той философской глубины, первым признаком которой служит темнота изложения.
Неприятная же тенденция была, без сомнения, очень неприятной. Из.посылок, которые принимались всеми логиками после Аристотеля, выводились противоречия. Это свидетельствовало о неблагополучии в чем-то, но не давало никаких намеков на то, каким образом можно было бы исправить положение. Открытие одного такого противоречия весной 1901 года положило конец моему логическому медовому месяцу. Я сообщил о неприятности Уайтхеду, который “утешил” меня словами: “Никогда больше нам не насладиться блаженством утренней безмятежности”.
Я увидел противоречие, когда изучил доказательство Кантора о том, что не существует самого большого кардинального числа. Полагая в своей невинности, что число всех вещей в мире должно составлять самое большое возможное число, я применил его доказательство к этому числу-мне хотелось увидеть, что получится. Это привело меня к открытию очень любопытного класса. Размышляя способом, который до тех пор казался адекватным, я полагал, что класс в некоторых случаях является, а в других-не является членом самого себя. Класс чайных ложек, например, не является сам чайной ложкой, но класс вещей, которые не являются чайными ложками, сам является одной из вещей, которые не являются чайными дожками. Казалось, что есть случаи и не негативные: например, класс всех классов является классом. Применение доказательства Кантора привело меня к рассмотрению классов, не являющихся членами самих себя; эти классы, видимо, должны образовывать некоторый класс. Я задался вопросом, является ди этот класс членом самого себя или нет. Если он член самого себя, то должен обладать определяющим свойством класса, т. е. не являться членом самого себя. Если он не является членом самого себя, то не должен обладать определяющим свойством класса и потому должен быть членом самого себя. Таким образом, каждая из альтернатив ведет к своей противоположности. В этом и состоит противоречие.
Читать дальше