Иной была судьба ньютоновых идей в философии Гегеля. У Лейбница сила (точнее, ее непротяженные средоточия в элементарных центрах) стала субстанцией; Кант перенес пространство из объекта познания в субъект. У Гегеля философия вернулась к объекту познания, но им стал объективированный субъект, абсолютный дух, и философия снова отклонилась от необратимой линии развития науки, от поисков протяженной субстанции мира. В сторону, но отнюдь не назад. После Гегеля противоречия ньютоновой механики уже не могли рассматриваться только как пятна на Солнце. Они оказались отображением противоречивого бытия, а их разрешение, составлявшее основное содержание науки XIX в., потребовало перехода к новым, более сложным, но также по существу противоречивым понятиям. Тем самым стала явной противоречивость классической картины мира. Энгельс в «Диалектике природы» раскрыл общий смысл наиболее крупных научных открытий XIX в. Эти открытия показали несводимость сложных форм движения к более простым. Жизнь несводима к физико-химическим закономерностям, физические процессы — к механическим; формы движения образуют иерархию, где каждая ступень характеризуется главной формой, которая не сводится к более простой, и побочной, которую можно свести к более простой форме. Механика, простое пространственное перемещение — наиболее общая форма, но уже физическая форма движения к ней не сводится, хотя она, как и все формы, неотделима от перемещения.
Наиболее радикальные и общие выводы, составившие основу такого представления о науке XIX в., были сделаны из термодинамики. Первое и второе начала термодинамики заставили пересмотреть старое представление о структуре науки, ввести понятие несводимости. Термодинамика не отделима от кинетической теории газов, законы распространения тепла — от механики молекул, но вместе с тем макроскопическая термодинамика несводима к механике, что видно хотя бы из второго начала, из необратимости переходов тепла, из великого открытия Сади Карно.
Несводимость сложных форм движения к механике противоречила механицизму, сделавшему сведение к механике идеалом научного объяснения. Но несводимость сочетается с неотделимостью, и, следовательно, более глубокая подоснова механического объяснения мироздания — констатация движений и сил как элементов космической гармонии, составляющая философский субстрат идей Ньютона, — сохранилась. В ньютонову картину мира были внесены частные границы между формами движения, она стала более сложной, ее размерность возросла. Но вскоре появились открытия, которые установили общую границу классического естествознания.
Речь идет о классической электродинамике. Она заполнила пространство физической средой, иначе говоря, ответила на самый трудный вопрос ньютоновской концепции вещества, силы и пространства. Ньютон искал в пространстве нечто, передающее воздействие одного тела на удаленное от него другое тело. Отсутствие однозначной концепции, обладающей «внутренним совершенством» и «внешним оправданием», приводило к плюрализму, к не удовлетворявшим Ньютона картезианским моделям и к не удовлетворявшим никого ссылкам на пространство как «чувствилище» божества. В конце концов Ньютон остановился на феноменалистической концепции сил, действующих на расстоянии, а в физику XVIII—XIX вв. вошел эфир с теми или иными введенными ad hoc гипотетическими свойствами. Но от феноменалистической концепции сил отказались, когда наряду с силами тяготения были открыты электрические и магнитные поля. Открытие их взаимодействия привело к изменению концепции поля. В ньютоновой теории тяготения силы существуют при наличии взаимодействующих, притягивающих друг друга тел. У Фарадея напряженность поля — это не формальная математическая характеристика той силы, которая действует в данной точке на тело с зарядом, равным единице, если такой заряд помещен в поле. Это состояние среды в данной точке, не зависящее от появления в ней пробного заряда. Фарадей рассматривает поле как совокупность реальных силовых трубок. Теория поля получила дальнейшее развитие у Максвелла. Максвелл сформулировал дифференциальные уравнения, показывающие возникновение магнитного поля при изменении электрического и возникновение электрического поля при изменении магнитного. Если где-то появляется переменное электрическое поле, оно вызывает магнитное поле, которое, будучи переменным, в свою очередь вызывает электрическое поле; в результате будут распространяться колебания электрического и магнитного полей — электромагнитное поле.
Читать дальше