Все доказательства делятся на непосредственныеи опосредованные. В непосредственном доказательстве некое высказывание подтверждается или опровергается путем соотнесения его с действительностью. Например, для того, чтобы установить истинным или ложным является утверждение: Сейчас на улице идет дождь достаточно соотнести его с действительностью, т. е. просто выглянуть в окно. Точно так же для определения инстинности или ложности суждения: Это тело тяжелее данной жидкости надо всего лишь погрузить тело в жидкость и посмотреть, что произойдет: утонет оно в ней или нет. Непосредственные доказательства также часто называют эмпирическими(от греч. еmреiria – опыт), т. е. базирующимися на опыте. В данном случае термин «опыт» надо понимать не в узком смысле (например, опыты по физике, опыты по химии и т. п.), а в широком: опыт – это все то, с чем мы соприкасаемся в жизни с помощью органов чувств (т. е. видим, слышим, осязаем, и т. д.).
Далеко не все можно доказать эмпирически, т. е. с помощью ссылки на опыт. Например, для эмпирического доказательства утверждения о том, что сумма внутренних углов любого треугольника равна 180 0, надо начертить треугольник, измерить транспортиром его углы и сложить их величины. Получится 180 0. Но ведь этот результат характеризует именно данный, только что начерченный треугольник. Вдруг у другого треугольника сумма внутренних углов не будет равна 180 0. Для того чтобы выяснить это, построим другой треугольник, измерим транспортиром его углы и сложим их величины. Опять получится 180º. Однако, может оказаться, что у третьего треугольника сумма внутренних углов будет отличаться от 180º. Начертим третий треугольник и измерим его углы… Таким образом, чтобы доказать эмпирически утверждение об одной и той же сумме внутренних углов любого треугольника, надо построить все возможные треугольники, измерить и сложить величины углов в каждом из них. Сделать это, конечно же, никто не сможет, ведь множество всех треугольников бесконечно. Как видим, в данном случае непосредственное, или эмпирическое доказательство неприменимо.
Каким же образом доказывается положение о сумме внутренних углов любого треугольника? Из курса школьной геометрии всем хорошо известно, что оно выводится не из видимой действительности, или опыта, а из других, ранее доказанных положений (теорем). Такое доказательство является опосредованным. Итак, если в непосредственном доказательстве истинность или ложность какого-либо утверждения устанавливается на основе соотнесения его с действительностью, то в опосредованном доказательстве некое высказывание подтверждается или опровергается с помощью других высказываний, истинность которых установлена ранее и не подлежит сомнению. Понятно, что предметом внимания логики является именно такое доказательство.
5.2. Структура доказательства
Опосредованное доказательство имеет определенную структуру, которая состоит из трех элементов:
1. Тезис– это то, чтодоказывается (какое-либо суждение, высказывание, утверждение и т. п.).
2. Аргументы, или основания– это то, чемдоказывается (какие-либо суждения, высказывания, утверждения и т. п., истинность которых установлена ранее). Как видим, понятия аргументы и основания являются в логике равнозначными, а соответствующие термины представляют собой синонимы.
3. Демонстрация– это то, какдоказывается. На первый взгляд наличие этого третьего элемента в структуре доказательства не совсем понятно: есть тезис, и есть аргументы, которые его обосновывают, или из которых он вытекает, – вот, кажется, и все доказательство. Здесь важно вспомнить закон достаточного основания, который требует не просто присутствия аргументов в неком доказательстве, но и говорит о том, что они должны быть достаточными для доказательства тезиса, т. е. обуславливающими его с достоверностью. Как уже отмечалось, часто встречаются ситуации, когда аргументы, или основания наличествуют, но не являются достаточными ( Преступление совершил Н., ведь он сам в этом признался ). Более того, нередко бывает так, что аргументы, или основания вообще не связаны с тезисом ( Ты виноват уж тем, что хочется мне кушать ). Поэтому в доказательстве необходимо показать (продемонстрировать) во-первых, связь аргументов с тезисом, а, во-вторых, их достаточность для его подтверждения или опровержения (без этого никакого доказательства нет). Итак, третий и наиболее важный элемент доказательства – это демонстрация, или способ связи аргументов с тезисом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу