Во-вторых, оказалось, что определенные аминокислоты (не все) обладают выраженным сродством к некоторым РНК-аптамерам – в частности, к таким, которые содержат кодоны и антикодоны, узнающие эти аминокислоты в соответствии с современным генетическим кодом. Исследователи отмечают независимость такого сродства от механизмов трансляции, так что жизнь в принципе могла его использовать и до формирования этих механизмов. Последующие адаптации привели, в конечном счете, к возникновению известной сегодня трансляции, основными компонентами которой являются тРНК и АРСазы. И если ранние АРСазы имели, скорее всего, РНК-природу, то гипотетический претрансляционный операциональный код мог быть использован для сборки первых аминокислотных последовательностей – пептидов, способных по эффективности полезных функций выигрывать соперничество с ферментами РНК-мира. Не факт, что этот примордиальный код был даже триплетным. Выяснилось, в-третьих, что сродство аминокислот с аптамерами определяется наличием в составе последних, скорее, антикодонных, нежели кодонных участков.
Гипотеза Сергея и Александра Родиных 68предполагает, что на ранних этапах операциональный код был ориентирован на РНК-последовательности, ставшие позднее акцепторным стеблем тРНК. Он кодировал четыре-шесть аминокислот; постепенно этот набор обогащался, расширяясь по флангам, пока из первичного кода не выделился тот строгий вариант, который мы сегодня и называем универсальным генетическим. Не слишком, но все же заметная регулярность структуры тРНК, навела этих исследователей на забавную мысль о поэтапной эволюции молекулы тРНК в результате последовательного удлинения (по схеме Фибоначчи) двух исходных компонентов – антикодонного триплета ( 3 основания) и «хвоста» молекулы 5`- DCCA -3` ( 4 основания), где D —неспаренный нуклеотидный детерминатор (73-й нуклеотид; обычно это пурин – А , реже G ); «хвоста», к которому прикрепляется аминокислота: 3,4,7,11,18,29,47, 76. Шестая итерация привела к числу, соответствующему «стандартной» длине тРНК. Близки к этой гипотезе соображения Деларю 69, который предположил существование каскадного двоичного механизма узнавания АРСазой «своей» тРНК – начиная со второй буквы кодона. Здесь нет необходимости вдаваться в детали, тем более, что молекулярный механизм каскадов Деларю остается неясным.
Так или иначе, рибозим, осуществлявший в машине первичного кодирования функцию АРСазы, неизбежно должен был обладать и матричными свойствами, которые позднее – при замене рибо-АРСаз на белковые – могли участвовать в формировании пар кодон-антикодон. При этом эволюция не делила цепи РНК на кодирующую (смысловую) и некодирующую (анти-смысловую): первоначально обе они были кодирующими, что еще в 1979г предположили Эйген и Шустер. Именно такая симметрия могла развести будущие белковые АРСазы на два класса, которые, в свою очередь, придали ацилируемым аминокислотам их взаимную групповую симметрию. С определенными оговорками эта симметрия нашла свое выражение в одной из модифицированных таблиц генетического кода, которую предложили Родины, назвав ее неслучайной . Мы не приводим ее здесь, поскольку симметрия тех таблиц кода, которые мы уже описали (в первую очередь, матрицы ), представляется более выраженной – также, как их оцифровка. Матрица указывает, в том числе, на вторую букву кодирующего триплета как на детерминатор гидрофобности (гидрофильности) кодируемой аминокислоты, в то время, как первая его буква (в меньшей степени третья) определяет ее массу.
Длительная и кропотливая экспериментальная работа, поиск едва заметных следов, отмечавших происхождение и историю генетического кода, всѐ это почти детективное расследование природы генетического кодирования буквально завораживает интеллект современного биолога, «траченного», несмотря на все предостережения, почти лапласовским детерминизмом и механистическим мышлением, неизбежными знаками времени. Биология долго ещѐ будет исследовать «молекулярные машины» трансляции, репликации и кодирования, «механизмы» зрения, свертывания крови и т. п., не отдавая себе отчета в том, что ее предмет находится в полушаге от квантового мира, «механика» которого – никакая не механика, а детерминизм для которого – противоестествен. Но эти исследования постепенно обогащают наши знания и рождают новые увлекательные гипотезы и предположения. В этом описанные выше числовые особенности генетического кода, однажды обнаруженные, но не обогащенные пока пошаговой экспериментальной работой (требующей намного большего масштаба), казалось бы, уступают молекулярным исследованиям. Такая работа, однако, впереди.
Читать дальше
Конец ознакомительного отрывка
Купить книгу