Предположение, что свет состоит из фотонов – частиц – противоречило Максвелловой премного любимой всеми теории электромагнетизма, которая постановляла, что свет – волна. Эйнштейн выдвинул догадку – и не ошибся, – что классические «максвелловские» волновые свойства света могут возникать, когда оптическое наблюдение за светом предполагает воздействие громадного количества фотонов, что в обычных обстоятельствах и происходит.
Лампочка в сотню ватт, к примеру, испускает примерно миллиард фотонов в одну миллиардную секунды. Квантовая же природа света проявляется, когда исследованию подвергается свет низкой интенсивности – или же, как в случае кое-каких явлений, например, фотоэлектрического эффекта, чей механизм связан с дискретностью природы фотонов. Но рассуждений Эйнштейна оказалось недостаточно, чтобы убедить остальных принять его радикальные взгляды, и встретили их со значительным и почти поголовным скептицизмом.
Особенно мне люб один комментарий на работу Эйнштейна – рекомендация 1913 года [345] Pais, Subtle Is the Lord , стр. 382–386.
, написанная совместно Планком и еще несколькими ведущими физиками по случаю принятия Эйнштейна в почтенную Прусскую академию наук: «В общем, можно сказать, что это далеко не самая значимая задача, на кои так богата современная физика, в которую Эйнштейн и заметного вклада не внес. То, что он иногда промахивается мимо цели в своих рассуждениях, как, например, в гипотезе световых квантов, не следует ставить ему в упрек, ибо невозможно предложить по-настоящему новое воззрение, даже в самых точных науках, если временами не рисковать».
* * *
Как ни парадоксально, именно один из первых противников фотонной теории Роберт Милликен позднее произвел точные замеры, подтвердившие закон Эйнштейна, который описывает энергию эмитированных фотоэлектронов, – и получил за эти усилия Нобелевскую премию 1923 года (а также и за измерение заряда электрона). Эйнштейн получил Нобелевскую премию в 1921-м с такой формулировкой: «Альберту Эйнштейну за служение теоретической физике и особенно за открытие закона фотоэлектрического эффекта» [346] Pais, Subtle Is the Lord, стр. 386.
.
Альберт Эйнштейн, 1921 год
Нобелевский комитет решил признать уравнение Эйнштейна, зато не удостоил вниманием интеллектуальную революцию, благодаря которой ему удалось его вывести. Никто не помянул ни световые фотоны, ни Эйнштейнов вклад в квантовую теорию. Абрахам Пайс назвал это «исторической недооцененностью, но также и точным отражением единства мнений физического сообщества» [347] Там же.
.
Сомнения в фотоне и в квантовой теории в целом окончательно разрешатся до конца десятилетия – благодаря созданию формальной теории «квантовой механики», которые потеснят Ньютоновы законы движения с их места фундаментальных принципов, управляющих движением предметов и их откликом на приложенные к ним силы. Когда эта теория наконец возникла, Эйнштейн признал ее успех, однако теперь сам восстал против кванта.
Отказываясь принять квантовую теорию как окончательную, Эйнштейн никогда не уставал верить, что она будет рано или поздно замещена еще более фундаментальной теорией, которая восстановит традиционные представления о причине и следствии. В 1905 году он опубликовал три статьи, и каждая изменила ход жизни физики, однако остаток своих дней безуспешно пытался добиться другого результата – повернуть вспять то, что сам начал. В 1951 году, в одном из последних писем своему другу Микеле Бессо, Эйнштейн признал, что потерпел поражение. «Пятьдесят лет размышлений, – писал он, – нисколько не приблизили меня к ответу на вопрос “Что есть световой квант?”» [348] Jeremy Bernstein, Albert Einstein and the Frontiers of Physics (Oxford: Oxford University Press, 1996), стр. 83.
.
Глава 11
Царство незримого
Заработав себе докторскую степень, я получил место младшего научного сотрудника в Калтехе и взялся искать себе тему для дальнейших трудов, чтобы не вылететь из науки и не занять более доходную позицию официанта в факультетском клубе. Как-то раз после одного семинара я разговорился с физиком Ричардом Фейнманом о теории под названием струнная. Фейнман, которому в те поры перевалило за шестьдесят, среди своих коллег-физиков был, вероятно, самым почитаемым на свете. Ныне многие (хотя отнюдь не все) считают теорию струн главным кандидатом на единую теорию всех сил природы, святой грааль теоретической физики. Но в те времена о ней мало кто слышал, а из них, в свою очередь, ею мало кто увлекался – включая Фейнмана. Он как раз брюзжал по поводу теории струн, когда в разговор вмешался гость нашего факультета, прибывший из университета в Монреале: «Мне кажется, не стоит отвращать молодых людей от исследования новых теорий лишь потому, что они не приняты светилами физики» [349] Leonard Mlodinow, Feynman’s Rainbow: A Search for Beauty in Physics and in Life (New York: Vintage, 2011), стр. 94–95. [Рус. цит. по: Леонард Млодинов, «Радуга Фейнмана». – Примеч. перев. ]
, – сказал он Фейнману.
Читать дальше
Конец ознакомительного отрывка
Купить книгу