Но хотя Эйнштейн и помог физикам окончательно принять понятие атома, в своей работе, посвященной квантовой теории Планка, Эйнштейн ввел новую «атомоподобную» теорию света, которую физикам оказалось еще труднее усвоить. Изучив исследования абсолютно черного тела, проделанные Планком, Эйнштейн пришел к своей собственной теории. Не удовлетворившись рассуждениями Планка, он разработал собственные математические приемы понимания этого явления. И хотя пришел он к тому же заключению – что излучение абсолютно черного тела можно объяснить лишь в понятиях кванта, – в его объяснении содержалось важнейшее, пусть и чисто техническое с виду, отличие: Планк допустил, что дискретный характер энергии излучения происходит от особенностей осцилляции атомов и молекул абсолютно черного тела, происходящей при излучении, а Эйнштейн счел дискретную природу неотъемлемым свойством самого излучения.
Эйнштейн рассматривал излучение абсолютно черного тела как доказательство радикально нового закона природы: вся электромагнитная энергия передается конечными «пакетами», а излучение состоит из частиц, подобных атомам света. Именно благодаря этому прозрению Эйнштейн первым осознал, что квантовый принцип – революционен, что он – фундаментальная сторона нашего мира, а не просто удобный частный математический прием, примененный для объяснения излучения абсолютно черного тела. Он назвал частицы излучения световыми квантами, а в 1926 году его световые кванты получат свое современное имя – фотоны.
Брось Эйнштейн это дело на полпути, его теория фотонов стала бы лишь очередной моделью, выдуманной, как Планкова, для объяснения излучения абсолютно черного тела. Но, если представление о фотоне в самом деле фундаментально, оно должно прояснить природу и других явлений, а не только того, ради которого его измыслили. Эйнштейн обнаружил одно такое явление – фотоэлектрический эффект.
Фотоэлектрический эффект – явление, при котором свет, направленный на металл, вызывает электронную эмиссию. Испускаемые электроны можно зарегистрировать в виде электрического тока и применять в разных приборах. Это явление сыграет ключевую роль в развитии телевизионной техники и по-прежнему применяется в приспособлениях типа детекторов дыма и сенсоров, не дающих дверям лифта закрыться, когда вы в него входите. В последнем случае луч света пересекает вход в лифт и падает на фотоэлектрический рецептор на противоположной стороне, при этом генерируется электрический ток; заходя в лифт, вы разрываете собой луч света и, соответственно, ток перестает генерироваться, а производители лифтов устроили все так, что, когда ток прекращает течь, двери не закрываются.
Что свет, направленный на металлы, может генерировать электрический ток, обнаружил в 1887 году немецкий физик Генрих Герц [Хайнрих Херц] – он первым осознанно произвел и засек электромагнитные волны от электрических разрядов, и именно в честь него названа единица частоты, герц. Но Герц не мог объяснить фотоэлектрический эффект, поскольку электроны тогда еще не открыли. Это случилось в лаборатории британского физика Дж. Дж. Томсона в 1897 году – через три года после смерти Герца в возрасте тридцати шести лет от редкого заболевания, при котором воспаляются кровеносные сосуды.
Существование электрона предложило простое объяснение фотоэлектрического эффекта: волна света ударяется о металл, происходит возбуждение электронов металла, и они вылетают вовне и являют себя в виде искр, излучения и тока. Вдохновленные работой Томсона физики принялись изучать этот эффект в подробностях. Но продолжительные и трудные эксперименты постепенно выявили особенности фотоэлектрического эффекта, не отвечавшие теоретической картине.
К примеру, если увеличить интенсивность светового луча, электронов с металлической поверхности срывается больше, но на энергии их это увеличение не сказывается. А это противоречит предсказанию классической физики: чем интенсивнее свет, тем больше в нем энергии, а значит при ее поглощении электроны должны вылетать быстрее, с большей энергией.
Эйнштейн размышлял над этой загадкой несколько лет и в 1905 году наконец внес квантовую поправку: полученные данные можно объяснить, если свет состоит из фотонов. Картина фотоэлектрического эффекта, предложенная Эйнштейном, такова: каждый квант света, попадающий на металл, передает свою энергию некоему конкретному электрону. Энергия, которую несет каждый фотон, пропорциональна его частоте, или «цвету», света, и, если фотон доносит достаточно энергии, он вышибет электрон с поверхности металла. Свет более высокой частоты состоит из фотонов с большей энергией. Однако, если увеличить лишь интенсивность света (а не частоту), в потоке света будет больше фотонов, но у них не будет больше энергии. В результате свет большей интенсивности выбьет из металла больше электронов, но энергия этих электронов будет та же – и именно это наблюдается в эксперименте.
Читать дальше
Конец ознакомительного отрывка
Купить книгу