Исследовать детальную структуру генов у высших и их вирусов стало возможным лишь с появлением генной инженерии и после разработки методов чтения ДНКовых текстов. Каково же было изумление и замешательство ученых, когда в 1977 году выяснилось, что гены у высших организмов не непрерывны, а состоят из отдельных кусков, разделенных какими-то другими последовательностями нуклеотидов! ДНК вдруг предстала этаким винегретом из генов, порубленных на части. Когда Ричард Робертс (работавший в то время в возглавлявшейся Уотсоном Колд-Спринг-Харборской лаборатории в окрестностях Нью-Йорка, на Лонг-Айленде) и Филип Шарп (Массачусетский технологический институт) независимо пришли к такому выводу, изучая геном одного из вирусов, вызывающих обычную простуду (аденовирус), это было воспринято в качестве курьеза. Однако затем выяснилось, что так же устроены и глобиновый ген у кролика, и овальбуминовый ген у цыпленка, и гены рибосомальной РНК у плодовой мушки дрозофилы. Короче, так оказались устроены почти все гены высших организмов. За открытие расчлененных генов Робертс и Шарп были в 1993 году удостоены Нобелевской премии по физиологии и медицине.
Промежутки между кусками генов бывают разными – от десятков до многих тысяч пар оснований. Как же на таких расчлененных генах синтезируются единые молекулы мРНК, по которым далее идет синтез единых молекул белков? Оказалось, что с участка ДНК, по которому разбросаны куски данного гена, включая и промежутки, снимается копия в виде очень длинной молекулы РНК. Эта молекула-предшественник или, как говорят, про-мРНК. Из про-мРНК сложным путем нарезания и последующего сшивания (этот процесс иногда называют «созреванием») получаются «зрелые» молекулы мРНК, которые уже могут выполнять свои прямые обязанности. Таким образом, сам факт расчлененности генов заставляет высшие организмы заботиться о «созревании» мРНКовых копий. Отметим, что в зачаточном (или, наоборот, в рудиментарном) виде механизм созревания РНК есть и у бактерий, но там дело ограничивается отрезанием «лишних» концов у молекул.
Как в деталях идет процесс созревания? Конечно, существуют специальные ферменты, разрезающие молекулу про-мРНК и сшивающие полученные фрагменты друг с другом. Но что указывает ферменту, как правильно нарезать молекулу и как правильно сшить получившиеся куски мРНК? И как выбрасываются промежуточные участки? Кухня такой рубки-сборки совсем не проста: ведь если фермент просто разрежет мРНК на куски, то эти куски разбегутся в разные стороны из-за броуновского движения – и пойди собери их!
Как удалось установить, в процессе «созревания» или, как его принято называть, сплайсинга мРНК участвуют специальные коротенькие молекулы РНК. Они «склеивают» про-мРНК так, чтобы специальным ферментам было ее удобно нарезать на куски и вновь сшить, выбросив лишнее. С легкой руки Гилберта те участки ДНК, слепок с которых сохраняется в ходе сплайсинга, называют экзонами , а выбрасываемые в ходе сплайсинга участки – интронами .
Какие же преимущества дает высшим организмам такой запутанный механизм производства мРНК? Ведь он не только очень сложен, но и таит в себе возможности очень грубых ошибок?
В самом деле, физико-химические данные свидетельствуют, что пространственная структура РНК не жесткая, она колеблется между различными состояниями, сильно различающимися по тому, какие участки образуют шпильки или другие элементы пространственной структуры. Это значит, что в одном состоянии про-мРНК будет нарезана на куски одним способом, а в другом – иным. Соответственно, разными окажутся выброшенные участки, и «зрелые» молекулы мРНК будут очень сильно отличаться друг от друга. Кроме того, накопление небольшого числа (или даже одной) точечных мутаций в про-мРНК может существенно нарушить соотношение пространственных структур, которые образует эта молекула.
Гилберт первым обратил внимание на то, что эти недостатки в организации генов эукариот, из-за которых они, по всей видимости, должны сильно уступать прокариотам в точности белкового синтеза, могут обернуться огромными преимуществами в эволюции. Судите сами: большая чувствительность к малым изменениям в ДНК и возможность одновременного синтеза зрелых мРНК с совершенно различными последовательностями нуклеотидов – все это может обеспечить искомое. А именно: испытание самых разных новых вариантов без полного отказа от старого. Это значило бы, что высшие организмы обладают тем механизмом изменчивости и отбора, которого так не хватало для примирения генетики и теории эволюции.
Читать дальше
Конец ознакомительного отрывка
Купить книгу